Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Contents

- 1. Synthesis of intermediate compounds.
- 2. X-ray crystal structure refinement parameters and special features
- 3. Spectroscopic, computational and electrochemical details.
 - 1. Figures S1-S4. Ambient temperature Vs 77 K, excitation spectra of complexes [9], [10], [11] and [13].
 - 2. Table S1. List of selected molecular orbital energies [eV] for the investigated complexes.
 - 3. Table S2. Isodensity surfaces plots of selected orbitals for the complexes [9], [10], [11] and [13].
 - 4. Table S3. Computed excitations energies and oscillator strengths for the complexes [9], [10], [11] and [13].
 - 5. Figure S5. Emission spectra of [9], [10], [11] and [13] in neat films.
 - 6. Figure S6. CV plots of complexes [9], [10], [11] and [13].
 - 7. Figure S7. NMR spectra of the ligand precursor (compound 7) and the NHC complexes [9], [10], [11] and [13].

Synthesis of intermediate compounds

Compound 2

To a solution of 1,1,1-trifluoro-2,4-pentanedione (12.95 g, 0.084 mol) in ethanol (110 mL) was added hydrazine hydrate (4.2 g, 0.084 mol) drop wise over 10 min. Reaction mixture was heated under refluxion for 3 h and then cooled to 50 °C. Solvent was removed *in vacuo*. To the yellow syrup was added diethylether (40 mL) and the resulting solution washed with water. Organic phase was dried over MgSO₄ and diethylether was removed in rotary evaporator (800 mb, 40 °C). Upon cooling compound **2** was obtained as colorless to pale yellow solid. Yield: 9.9 g, (77 %). ¹H NMR (300 MHz, DMSO-*d*₆): δ 13.32 (s, 1H, N–H), 6.41 (s, 1H, C–H), 2.3 (s, 3H, methyl). ¹⁹F NMR (282 MHz, DMSO-*d*₆): δ –60.56. MS (ESI HRMS) *m/z* (%): 173.0297 (100) [**2**]⁺, (calcd. for [**2**]⁺ 173.0297).

Compound 3

An aqueous solution of KMnO₄ (3.8 g, 24 mmol in 35 mL of H₂O) was added dropwise into a solution of 2 (3.0 g, 20 mmol, in 55 mL of H₂O). The mixture was heated under refluxion for 9 h. The reaction mixture was cooled to ambient temperature and the precipitated inorganic salts were filtered off over a bed of celite. The resultant filtrate was concentrated to 15 mL, followed by acidification using con. HCl. Resulting syrup or solid was suspended in diethylether and washed with H₂O. The ether phase was separated and dried over Na₂SO₄, and the solvents were removed *in vacuo*, to obtain compound **3** as colorless crystals. Yield: 1.85 g (51 %). 'H NMR (300 MHz, DMSO- d_6): δ 14.74 (s, 1H, N–H), 7.24 (s, 1H, C–H), 5.78 (s, 1H, carboxylic –OH). ¹⁹F NMR (282 MHz, DMSO- d_6): δ –60.62. MS (ESI HRMS, Negative mode) m/z (%): 179.0075 (100) [**3**]⁺, (calcd. for [**3**]⁺ 179.0063).

Compound 4

1.6 mL of con. H_2SO_4 was added dropwise to a solution of 3 (1.75 g, 9.72 mmol) in absolute methanol (20 mL) and the resulting solution was stirred overnight at ambient temperature. Solvent was removed *in vacuo*, and the resultant residue was dissolved in water (15 mL) and transferred into a 250 mL round bottomed flask. The mixture was neutralized slowly using saturated NaHCO₃ solution to an alkaline pH (8), followed by extraction with ethyl acetate. The organic component was dried over Na₂SO₄, filtered and the solvent was removed *in vacuo*, to obtain crude sample of 4 as colorless solid, which was further purified on a silica gel column using hexanes/ethyl acetate (3:2) as eluent. Yield: 1.01 g (53 %). ¹H NMR (300 MHz, DMSO-*d*₆): δ 14.95 (s, 1H, N–H), 7.35 (s, 1H, C–H), 3.92 (s, 3H, –OCH₃). ¹⁹F NMR (282 MHz, DMSO-*d*₆): δ -60.63. MS (ESI HRMS) *m/z* (%): 217.0203 (100) [4+Na]⁺, (calcd. for [4+Na]⁺ 217.0201).

Compound 5

To a suspension of LiAlH₄ (587 mg, 15.6 mmol), in tetrahydrofuran (40 mL) in a two necked round bottomed flask was slowly added a solution of compound 4 (1.5 g, 7.7 mmol) in 20 mL of tetrahydrofuran. The resultant mixture was heated at 65 °C for 24 h, followed by slow quenching of the reaction with H₂O under rapid cooling. After evaporation of the solvents *in vacuo*, the reaction mixture was suspended in methanol (20 mL) and bubbled with CO₂ (gas) for 10 minutes, followed by heating under refluxion for further 3 h. The reaction mixture was cooled and the solids were filtered off and methanol was removed *in vacuo*, to obtain pale yellow solids. The yellow solids were suspended in water and slightly acidified slightly followed by extraction using ethyl acetate (30 mL× 3) and dried over Na₂SO₄. Solvents were removed *in vacuo*, to obtain compound **5** as colorless solid. Yield: 0.48 g (55 %). ¹H NMR (400 MHz, Acetone-*d*₆): δ 12.53 (s, 1H, N–H), 6.39 (s, 1H, C–H), 4.60 (s, 2H, –CH₂), 4.46 (t, *J* = 5.4 Hz, 1H, OH). ¹⁹F NMR (282 MHz, Acetone-*d*₆): δ –62.37. MS (ESI HRMS) *m/z* (%): 201.00441 (100) [**5**+Cl]⁺, (calcd. for [**5**+Cl]⁺ 201.0000).

Compound 6

To an ice cold solution of **5** (616 mg, 3.4 mmol) in diethylether (40 mL) was added a solution of PBr₃ (0.68 mL, 7.25 mmol) and stirred for 2 days, after which the reaction mixture was poured into 10 mL of cold water. The mixture was neutralized using saturated NaHCO₃ solution and the aqueous mixture was extracted with diethylether (20 mL×3) followed by dichloromethane (20 mL×3) sequentially. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo*, to obtain compound **6** as colorless oil. Yield: 686 mg (88.23%). ¹H NMR (300 MHz, Acetone-*d*₆): δ 8.01 (s, 1H, NH), 6.74 (s, 1H, Ar-H), 4.72 (s, 2H, CH₂ bridge). ¹⁹F NMR (282 MHz, Acetone-*d*₆): δ –62.55 . MS (ESI HRMS) *m*/*z* (%):264.91811 (100) [6+Cl]⁺, 264.91704 (calcd. for [6+Cl]⁺.

X-ray crystal structure refinement parameters

X-ray crystal structure analysis of [9] (see CheckCIF file fro6223): formula $C_{24}H_{18}F_3N_5$ Pt, M = 628.52, yellow crystal, 0.15 × 0.15 × 0.10 mm, a = 11.2790(2), b = 17.2865(3), c = 11.0836(2) Å, $\beta = 102.242(1)^\circ$, V = 2111.88(6) Å³, $\rho_{calc} = 1.977$ gcm⁻³, $\mu = 6.694$ mm⁻¹, empirical absorption correction (0.433 $\leq T \leq 0.554$), Z = 4, monoclinic, space group P_{2_1}/c (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and ϕ scans, 10117 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin \theta$)/ λ] = 0.67 Å⁻¹, 3512 independent ($R_{int} = 0.051$) and 3251 observed reflections [$I > 2\sigma(I)$], 299 refined parameters, R = 0.060, $wR^2 = 0.161$, max. (min.) residual electron density 5.76(-3.08) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

X-ray crystal structure analysis of [10] (see CheckCIF file fro6323): formula $C_{26}H_{16}F_9N_5Pt$, M = 764.53, yellow crystal, $0.33 \times 0.20 \times 0.20$ mm, a = 10.3649(2), b = 11.2201(3), c = 11.8690(3) Å, $\alpha = 72.144(2)$, $\beta = 73.342(2)$, $\gamma = 77.339(1)^{\circ}$, V = 1245.57(5) Å³, $\rho_{calc} = 2.038$ gcm⁻³, $\mu = 5.728$ mm⁻¹, empirical absorption correction ($0.253 \le T \le 0.394$), Z = 2, triclinic, space group $P\overline{1}$ (No. 2), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 11385 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.67 Å⁻¹, 4266 independent ($R_{int} = 0.034$) and 4191 observed reflections [$I > 2\sigma(I)$], 399 refined parameters, R = 0.020, $wR^2 = 0.052$, max. (min.) residual electron density 0.85 (-0.82) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

X-ray crystal structure analysis of [11] (see CheckCIF file fro66517): formula $C_{26}H_{16}F_9N_5Pt$, M = 764.53, yellow crystal, $0.34 \times 0.30 \times 0.24$ mm, a = 7.5972(1), b = 22.2707(4), c = 15.7810(4) Å, $\beta = 102.385(1)^\circ$, V = 2607.93(9) Å³, $\rho_{calc} = 1.947$ gcm⁻³, $\mu = 5.471$ mm⁻¹, empirical absorption correction ($0.257 \le T \le 0.353$), Z = 4, monoclinic, space group P_{2_1}/c (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 23180 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin \theta$)/ λ] = 0.66 Å⁻¹, 4316 independent ($R_{int} = 0.039$) and 4071 observed reflections [$I > 2\sigma(I)$], 408 refined parameters, R = 0.028, $wR^2 = 0.072$, max. (min.) residual electron density 0.98 (–1.17) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Exceptions and special features: Compound [9] contains one fluorine atom (F19) with irregular displacement ellipsoid, which was therefore constrained to be more regular using the program command ISOR. For the compound [10] a disordered over two position CF_3 group was found. Several restraints (SIMU, ISOR and SADI) were used in order to improve refinement stability. For the compound [11] one disordered CF_3 group over two positions was found. Several restraints (SADI, SAME, SIMU and ISOR) were used in order to improve refinement stability. The fluorine atoms from one CF_3 group displayed irregular displacement ellipsoids, which were therefore constrained to be more regular using the program command ISOR.

Spectroscopic, computational and electrochemical details.

Figure S1. Excitation spectra of complex [9] at rt (solid line) and 77 K (dashed line).

Figure S2. Excitation spectra of complex [10] at rt (solid line) and 77 K (dashed line).

Figure S3. Excitation spectra of complex [11] at rt (solid line) and 77 K (dashed line).

Figure S4. Excitation spectra of complex [13] at rt (solid line) and 77 K (dashed line).

Figure S5. Emission spectra of [9] (solid line), [10] (long dashed line), [11] (dotted line) and [13] (short dashed) in neat films. Excitation wavelengths: 357 nm, 354 nm, 336 nm and 308 nm, respectively.

Computational results

Table S1. List of selected molecular orbital energies [eV] for the investigated complexes, and HOMO-LUMO gaps.

orbital	[9]	[10]	[11]	[13]
LUMO + 4	-0.194	-0.557	-0.360	-0.295
LUMO $+3$	-0.409	-1.138	-0.392	-0.401
LUMO + 2	-1.297	-1.428	-1.267	-1.135
LUMO + 1	-1.357	-1.790	-1.938	-1.337
LUMO	-1.982	-2.705	-2.452	-2.057
НОМО	-6.075	-6.735	-6.751	-6.327

HOMO – 5 HOMO-LUMO gap	-7.241	-7.713	-7.630	-7.294
HOMO – 4	-6.814	-7.636	-7.480	-7.200
HOMO – 3	-6.684	-7.318	-7.257	-7.178
HOMO – 2	-6.537	-7.211	-7.156	-7.155
HOMO – 1	-6.349	-7.160	-7.109	-6.987

Table S2. Isodensity surfaces plots of selected orbitals for the complexes [8], [9], [10] and [11] in the gas phase at their optimized ground-state geometry. Isodensity value 0.02 e Bohr⁻³.

Table S3. Computed excitations energies and oscillator strengths for the complexes [9], [10], [11] and [13]. Except for S₁ and T₂, only calculated excitations with $f \ge 0.05$ are listed. Also, only singly excited configurations contributing more than 20% are reported, together with the corresponding transition energy and expansion coefficient.

[9]	[10]	[11]	[13]
488, 2.5423 (0.000) (3A) (0.57) HOMO → LUMO	480, 2.5847 (0.000) (3A) (0.55) HOMO → LUMO	456, 2.7138 (0.000) (3A) (0.47) HOMO → LUMO	448, 2.7634 (0.000) (3A) (0.39) HOMO → LUMO
399, 3.1084 (0.008) (1A) (0.70) HOMO → LUMO	394, 3.1504 (0.0452) (¹A) (0.69) HOMO → LUMO	368, 3.3678 (0.0439) ('A) (0.69) HOMO → LUMO	370, 3.3526 (0.0411) (¹A) (0.70) HOMO → LUMO
346, 3.5881 (0.1405) ('A) (0.57) HOMO-1 \rightarrow LUMO ('A) (0.35) HOMO-2 \rightarrow LUMO ('A) (0.15) HOMO-3 \rightarrow LUMO	331, 3.7483 (0.0881) ('A) (0.54) HOMO−2 → LUMO ('A) (0.41) HOMO-3 → LUMO	320, 3.8716 (0.1159) ('A) (0.62) HOMO−1 → LUMO ('A) (0.17) HOMO → LUMO+1	299, 4.1526 (0.1371) ('A) (0.63) HOMO–1 \rightarrow LUMO ('A) (0.18) HOMO-4 \rightarrow LUMO ('A) (0.16) HOMO-2 \rightarrow LUMO
325, 3.8187 (0.0455) ('A) (0.41) HOMO → LUMO+1 ('A) (0.36) HOMO → LUMO+2	294, 4.2250 (0.1139) ('A) (0.54) HOMO−4 → LUMO ('A) (0.15) HOMO-6 → LUMO	313, 3.9605 (0.0913) ('A) (0.65) HOMO → LUMO+1	289, 4.2935 (0.0555) ('A) (0.43) HOMO \rightarrow LUMO+2 ('A) (0.29) HOMO-4 \rightarrow LUMO
313, 3.9642 (0.0827) ('A) (0.53) HOMO → LUMO+1	277, 4.4779 (0.0616) ('A) (0.53) HOMO–7 → LUMO ('A) (0.19) HOMO-6 → LUMO	283, 4.3859 (0.0557) ('A) (0.60) HOMO–1 → LUMO+1 ('A) (0.21) HOMO-3 → LUMO+1	$\begin{array}{c} 280, 4.4277 \text{ (0.2214)} \\ (^{1}\text{A}) \text{ (0.53)} \text{ HOMO} \rightarrow \text{LUMO+2} \\ (^{1}\text{A}) \text{ (0.28)} \text{ HOMO-3} \rightarrow \text{LUMO} \\ (^{1}\text{A}) \text{ (0.27)} \text{ HOMO-2} \rightarrow \text{LUMO} \end{array}$
$\begin{array}{c} 307, 4.0397 \ (0.1090) \\ (^{1}A) \ (0.40) \ HOMO \rightarrow LUMO+2 \\ (^{1}A) \ (0.15) \ HOMO-1 \rightarrow \ LUMO \end{array}$	270, 4.6021 (0.0693) ('A) (0.45) HOMO–8 → LUMO ('A) (0.17) HOMO-7 → LUMO	280, 4.4222 (0.0875) ('A) (0.41) HOMO−4 → LUMO	276, 4.4951 (0.0539) (¹A) (0.64) HOMO−5 → LUMO
$ \begin{array}{c} \hline 280, 4.4306 (0.1474) \\ (^{1}A) (0.46) HOMO-5 \rightarrow LUMO \\ (^{1}A) (0.23) HOMO-1 \rightarrow LUMO+1 \end{array} $	$\begin{array}{c} 267, 4.6506 (0.1946) \\ (^{\text{i}}\text{A}) (0.45) \text{ HOMO-2} \rightarrow \text{LUMO+1} \\ (^{\text{i}}\text{A}) (0.23) \text{ HOMO-8} \rightarrow \text{LUMO} \\ (^{\text{i}}\text{A}) (0.22) \text{ HOMO} \rightarrow \text{LUMO+3} \end{array}$	273, 4.5448 (0.0521) ('A) (0.32) HOMO–6 \rightarrow LUMO ('A) (0.27) HOMO \rightarrow LUMO+2	252, 4.9167 (0.0472) ('A) (0.62) HOMO−1→ LUMO+1 ('A) (0.11) HOMO → LUMO+1
$\begin{array}{c} \hline & \hline & 273, 4.5298 \ (0.0651) \\ \hline & (^{A}) \ (0.53) \ \text{HOMO-3} \rightarrow \text{LUMO+1} \\ \hline & (^{A}) \ (0.31) \ \text{HOMO-3} \rightarrow \ \text{LUMO+2} \end{array}$	261, 4.7607 (0.0786) ('A) (0.53) HOMO-3 → LUMO+1 ('A) (0.17) HOMO → LUMO+3	$\begin{array}{c} \hline 265, 4.6770 (0.1362) \\ (^{1}A) (0.51) \text{ HOMO} \rightarrow \text{LUMO+3} \\ (^{1}A) (0.16) \text{ HOMO-1} \rightarrow \text{LUMO+3} \end{array}$	$ \begin{array}{c} \hline 251, 4.9420 (0.1138) \\ (^{1}A) (0.40) \text{ HOMO-}_{3} \rightarrow \text{LUMO+1} \\ (^{1}A) (0.28) \text{ HOMO-}_{2} \rightarrow \text{LUMO+1} \end{array} $

256, 4.8514 (0.2396) (¹A) (0.53) HOMO → LUMO+3 (¹A) (0.22) HOMO–9 → LUMO	262, 4.7421 (0.0495) ('A) (0.42) HOMO-2 → LUMO+2 ('A) (0.23) HOMO-3 → LUMO+2	
	254, 4.8900 (0.1566) ('A) (0.51) HOMO-1 → LUMO+3 ('A) (0.31) HOMO-4 → LUMO+1	

Figure S6. CV plots of complexes [9], [10], [11], [13].

Figure S7. NMR spectra of ligand precursor 7 and complexes [9], [10], [11], [13].

a. Compound 7 (ligand precursor)

Compound [11]

