Synthesis and anticancer activity of silver(I)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine

Electronic Supplementary Information (ESI)

Heba A. Mohamed, ${ }^{\text {a }}$ Benjamin R. M. Lake, ${ }^{\text {a }}$ Thomas Laing, ${ }^{\text {b }}$ Roger M. Phillips ${ }^{* c}$ and Charlotte E. Willans ${ }^{*}{ }^{*}$
${ }^{a}$ School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
${ }^{b}$ Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, U.K.
${ }^{c}$ Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, U.K.
E-mail: c.e.willans@leeds.ac.uk

Contents

1. Molecular structures of imidazolium salts 1
2. NMR spectra for silver-NHC complexes 1
3. Crystallographic details 5
4. Chemosensitivity data 13
5. Log P data 15

1. Molecular structures of imidazolium salts

2b

2c

2d

Fig. S1 Molecular structures of imidazolium iodide salts $\mathbf{2 b}$-2d. Hydrogen atoms have been omitted for clarity and ellipsoids are shown at 50% probability.

2. NMR spectra for silver-NHC complexes

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S3 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 b}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
Z8'0tI-

$89^{\circ} 0 \mathrm{OSI}$
$86^{\prime} \mathrm{ZSI}-$
$\stackrel{\rightharpoonup}{2}$
∞
$\stackrel{\circ}{1}$
-50.33

30.37
$f_{33.00}^{31.59}$
-28.33
-19.09
-13.62

Fig. S5 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 c}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO).

Fig. S6 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3 d}\left(300 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO with water suppression).

Fig. S7 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\mathbf{3 d}\left(75 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO).

3. Crystallographic details

X-ray diffraction data were collected on an Agilent SuperNova diffractometer fitted with an Atlas CCD detector with Mo-K α radiation $(\lambda=0.71073 \AA$) or $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=$ $1.5418 \AA$). Crystals were mounted under oil on glass or nylon fibres. Data sets were corrected for absorption using a multiscan method, and the structures were solved by direct methods using SHELXS-97 and refined by full-matrix least squares on F2 using ShelXL-97, interfaced through the program X-Seed. Molecular graphics for all structures were generated using POV-RAY in the X-Seed program.

Crystallographic details for 2b

Identification code	Ligand2b	
Formula	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{IN}_{4} \mathrm{O}_{2}$	
Formula weight	412.23	
Size	$0.05 \times 0.03 \times 0.02 \mathrm{~mm}$	
Crystal morphology	Colourless fragment	
Temperature	$100.00(10) \mathrm{K}$	
Wavelength	$1.54184 \AA$	
Crystal system	Orthorhombic	
Space group	$P n a 2_{1}$	
Unit cell dimensions	$a=16.8371(11) \AA$	$\alpha=90^{\circ}$
	$b=10.7293(6) \AA$	$\beta=90^{\circ}$
	$c=9.0448(6) \AA$	$\gamma=90^{\circ}$
	$1633.95(18) \AA^{3}$	
Volume	4	
Z	$1.676 \mathrm{Mg} / \mathrm{m}^{3}$	
Density (calculated)	$15.511 \mathrm{~mm}{ }^{-1}$	
Absorption coefficient	816	
$F(000)$	$4.89 \leq \theta \leq 66.59^{\circ}$	
Data collection range	$-20 \leq h \leq 20,-12 \leq k \leq 10,-9 \leq l \leq 10$	
Index ranges	9250	
Reflections collected	$2736[R(i n t)=0.0828]$	
Independent reflections	$1744[I>2 \sigma(l)]$	
Observed reflections		

Absorption correction	multi-scan
Max. and min. transmission	0.7467 and 0.511
Refinement method	Full
Data / restraints / parameters	$2736 / 1 / 202$
Goodness of fit	1.017
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0491, w R_{2}=0.1024$
R indices (all data)	$R_{1}=0.0921, w R_{2}=0.1211$
Largest diff. peak and hole	0.838 and $-0.829 \mathrm{e} . \AA^{-3}$
Absolute structure parameter	$0.084(14)$

Crystallographic details for 2c

Identification code
Formula
Formula weight
Size
Crystal morphology
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Ligand2c
$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{IN}_{4} \mathrm{O}_{2}$
378.21
$0.21 \times 0.17 \times 0.06 \mathrm{~mm}$
Colourless block
99.98(14) K
0.71073 Å

Monoclinic
Cc
$a=9.4007(7) \AA \quad \alpha=90^{\circ}$

	$b=22.7653(11) \AA$	$\beta=90.244(6)^{\circ}$
	$c=7.1881(5) \AA$	$\gamma=90^{\circ}$
Volume	1538.31(17) \AA^{3}	
Z	4	
Density (calculated)	$1.633 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$2.086 \mathrm{~mm}^{-1}$	
$F(000)$	752	
Data collection range	$3.35 \leq \theta \leq 27.1^{\circ}$	
Index ranges	$-8 \leq h \leq 12,-24 \leq$	9, $-9 \leq l \leq 8$
Reflections collected	4777	
Independent reflections	$2369[R(\mathrm{int})=0.03$	
Observed reflections	2249 [$\mathrm{I}>2 \sigma(I)]$	
Absorption correction	multi-scan	
Max. and min. transmission	0.885 and 0.6684	
Refinement method	Full	
Data / restraints / parameters	2369 / 289 / 159	
Goodness of fit	1.085	
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0564, w R_{2}=$	407
R indices (all data)	$R_{1}=0.0593, w R_{2}=$	439
Largest diff. peak and hole	2.111 and -1.313e.	
Absolute structure parameter	0.28(8)	
		C(6) (3)

Crystallographic details for 2d

Identification code	Ligand2d
Formula	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{IN}_{4} \mathrm{O}_{4}$
Formula weight	434.23
Size	$0.17 \times 0.06 \times 0.04 \mathrm{~mm}$
Crystal morphology	Colourless needle
Temperature	99.97(11) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P 2_{1} / n$
Unit cell dimensions	$a=10.4060(11) \AA \quad \alpha=90^{\circ}$
	$b=7.2140(7) \AA \quad \beta=89.954(9)^{\circ}$
	$c=21.938(2) \AA \quad \gamma=90^{\circ}$
Volume	1646.9(3) \AA^{3}
Z	4
Density (calculated)	$1.751 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.97 \mathrm{~mm}^{-1}$
$F(000)$	864
Data collection range	$3.38 \leq \theta \leq 27.1^{\circ}$
Index ranges	$-13 \leq h \leq 13,-9 \leq k \leq 9,-28 \leq l \leq 28$
Reflections collected	8263
Independent reflections	$3604[R(\mathrm{int})=0.0537]$
Observed reflections	2723 [$I>2 \sigma(I)]$
Absorption correction	multi-scan
Max. and min. transmission	0.9254 and 0.7306
Refinement method	Full
Data / restraints / parameters	3604 / 6 / 225
Goodness of fit	1.016
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0424, w R_{2}=0.0689$
R indices (all data)	$R_{1}=0.0668, w R_{2}=0.0775$
Largest diff. peak and hole	0.847 and -0.865e. \AA^{-3}

Crystallographic details for 3b

Identification code	Complex3b	
Formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{AgN}_{4} \mathrm{O}_{4}$	
Formula weight	451.23	
Size	$0.24 \times 0.08 \times 0.05 \mathrm{~mm}$	
Crystal morphology	Colourless needle	
Temperature	$200.01(10) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Triclinic	
Space group	$P \overline{1}$	
Unit cell dimensions	$a=7.9222(8) \AA$	$\alpha=105.139(15)^{\circ}$
	$b=9.4296(18) \AA$	$\beta=96.986(10)^{\circ}$
	$c=12.3121(19) \AA$	$\gamma=92.438(11)^{\circ}$
	$878.6(2) \AA \AA^{3}$	
Volume	2	
Z	$1.706 \mathrm{Mg}^{\circ} / \mathrm{m}^{3}$	
Density (calculated)	$1.178 \mathrm{~mm}^{-1}$	
Absorption coefficient	456	
$F(000)$	$3.3 \leq \theta \leq 28.38^{\circ}$	
Data collection range		

Index ranges
Reflections collected
Independent reflections
Observed reflections
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness of fit
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Largest diff. peak and hole
$-7 \leq h \leq 10,-12 \leq k \leq 12,-16 \leq l \leq 16$
13274
$4315[R(\mathrm{int})=0.1124]$
$3000[I>2 \sigma(I)]$
multi-scan
0.9434 and 0.7652

Full
4315 / 0 / 240
1.061
$R_{1}=0.0774, w R_{2}=0.1653$
$R_{1}=0.1181, w R_{2}=0.1792$
1.865 and $-0.922 \mathrm{e} . \AA^{-3}$

Crystallographic details for 3c

Identification code
Formula
Formula weight
Size
Crystal morphology
Temperature
Wavelength

Complex3c
$\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{Ag}_{2} \mathrm{~N}_{8} \mathrm{O}_{9}$
852.45
$0.21 \times 0.1 \times 0.03 \mathrm{~mm}$
Colourless needle
100.0(2) K
0.71073 £

Crystal system	Triclinic
Space group	$P \overline{1}$
Unit cell dimensions	$a=9.0608(4) \AA \quad \alpha=87.707(4)^{\circ} \AA^{\circ}$
	$b=9.5485(5) \AA \quad \beta=84.198(4)^{\circ}$
	$c=19.4525(9) \AA \quad \gamma=82.717(4)^{\circ}$
Volume	$1660.21(14) \AA^{3}$
Z	2
Density (calculated)	$1.705 \mathrm{Mg}^{\circ} \mathrm{m}^{3}$
Absorption coefficient	$1.243 \mathrm{~mm}^{-1}$
$F(000)$	868
Data collection range	$2.93 \leq \theta \leq 28.28^{\circ}$
Index ranges	$-12 \leq h \leq 12,-12 \leq k \leq 12,-25 \leq l \leq 25$
Reflections collected	24918
Independent reflections	$8239[R(\mathrm{int})=0.0369]$
Observed reflections	$6835[I>2 \sigma(I)]$
Absorption correction	multi-scan
Max. and min. transmission	0.9637 and 0.7803
Refinement method	Full
Data $/$ restraints $/$ parameters	$8239 / 0 / 395$
Goodness of fit	1.022
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0331, w R_{2}=0.0712$
R indices (all data)	$R_{1}=0.0447, w R_{2}=0.0764$
Largest diff. peak and hole	1.221 and $-0.572 \mathrm{e} . \AA^{-3}$

Crystallographic details for 3d

Identification code	Complex3d	
Formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{AgN}_{4} \mathrm{O}_{4}$	
Formula weight	437.21	
Size	$0.2 \times 0.12 \times 0.06 \mathrm{~mm}$	
Crystal morphology	Colourless plate	
Temperature	$99.9(5) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Triclinic	
Space group	$P \overline{1}$	
Unit cell dimensions	$a=8.7170(6) \AA$	$\alpha=82.181(6)^{\circ}$
	$b=9.9462(6) \AA$	$\beta=86.063(6)^{\circ}$
	$c=10.2712(9) \AA$	$\gamma=67.816(6)^{\circ}$
Volume	$816.79(10) \AA \AA^{3}$	
Z	2	
Density (calculated)	$1.778 \mathrm{Mg}^{\circ} / \mathrm{m}^{3}$	
Absorption coefficient	$1.264 \mathrm{~mm}^{-1}$	
$F(000)$	440	
Data collection range	$3.17 \leq \theta \leq 28.28^{\circ}$	
	12	

Index ranges
Reflections collected
Independent reflections
Observed reflections
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness of fit
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Largest diff. peak and hole
$-11 \leq h \leq 11,-13 \leq k \leq 10,-9 \leq l \leq 13$
6438
$4023[R($ int $)=0.0405]$
$3452[I>2 \sigma(I)]$
multi-scan
0.928 and 0.7861

Full
4023 / 0 / 230
1.043
$R_{1}=0.043, w R_{2}=0.0756$
$R_{1}=0.0531, w R_{2}=0.0836$
0.743 and $-0.78 \mathrm{e} . \AA^{-3}$

4. Chemosensitivity data

Cells were incubated in 96-well plates, at 2×103 cells per well in $200 \mu \mathrm{~L}$ of growth media (RPMI 1640 supplemented with 10% foetal calf serum, sodium pyruvate (1 mM) and L-glutamine (2 mM)). Cells were incubated for 24 hours at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$ prior to drug exposure. Silver compounds and cisplatin were dissolved in dimethylsulfoxide at a concentration of 25 mM and diluted with medium to obtain drug solutions ranging from $25 \mu \mathrm{M}$ to $0.049 \mu \mathrm{M}$. The final dimethylsulfoxide concentration
was $0.1 \% ~(\mathrm{v} / \mathrm{v})$ which is non-toxic to cells. Drug solutions were applied to cells and incubated for 96 hours at $37{ }^{\circ} \mathrm{C}$ in an atmosphere of $5 \mathrm{CO}_{2}$. The solutions were removed from the wells and fresh medium added to each well along with $20 \mu \mathrm{~L}$ MTT $(5 \mathrm{mg} / \mathrm{mL})$, and incubated for 4 hours at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$. The solutions were removed and $150 \mu \mathrm{~L}$ dimethylsulfoxide was added to each well to dissolve the purple formazan crystals. A plate reader was used to measure the absorbance at 540 nm . Lanes containing medium only, and cells in medium only (no drug), were used as blanks for the spectrophotometer and 100% cell survival respectively. Cell survival was determined as the absorbance of treated cells divided by the absorbance of controls and expressed as a percentage. The concentration required to kill 50% of cells $\left(\mathrm{IC}_{50}\right)$ was determined from plots of \% survival against drug concentration. Each experiment was repeated 3 times and a mean value obtained.

Table S1 Response of eight cell lines to silver(I)-NHC complexes 3a-3e and cisplatin. Values presented are $\mathrm{IC}_{50} \mu \mathrm{M} \pm \mathrm{SD}$ (in parentheses) for three independent experiments.

Cell Line	cisplatin	3a	3b	3c	3d	3e
A357	$1.2(0.3)$	$34.5(3.8)$	$21.4(7.5)$	$27.4(3.9)$	$11.5(5.3)$	$12.4(1.3)$
HCT116	$2.4(0.3)$	$26.7(9.9)$	$29.6(3.5)$	$22.4(4.8)$	$19.5(2.3)$	$19.0(5.1)$
HT-29	$0.6(0.1)$	$41.8(9.8)$	$29.9(16.5)$	$28.5(2.0)$	$21.4(6.5)$	$20.7(1.5)$
LN229	$0.7(0.5)$	$29.2(12.8)$	$18.4(12.0)$	$46.5(9.8)$	$11.2(1.5)$	$7.4(1.8)$
Panc-1	$2.6(0.9)$	$31.7(2.8)$	$29.7(8.2)$	$16.9(1.1)$	$7.6(3.2)$	$23.5(5.9)$
SiHa	$0.9(0.3)$	$21.9(3.8)$	$15.3(2.6)$	$16.4(0.5)$	$13.1(3.7)$	$14.0(2.2)$
U87MG	$0.9(0.4)$	$33.7(1.4)$	$22.8(5.1)$	$14.0(4.3)$	$17.6(4.5)$	$22.1(8.1)$
U-251	$1.0(0.6)$	$54.8(15.7)$	$26.7(8.8)$	$51.4(17.8)$	$14.2(2.5)$	$29.6(5.1)$
Average	$\mathbf{1 . 2 9}$	$\mathbf{3 4 . 3 4}$	$\mathbf{2 4 . 2 3}$	$\mathbf{2 7 . 9 4}$	$\mathbf{1 4 . 5 1}$	$\mathbf{1 8 . 5 9}$

Figure S8 Response of eight cell lines to silver(I)-NHC complexes 3a-3e and cisplatin. Values presented are $\mathrm{IC}_{50}(\mu \mathrm{M}) \pm$ SD for three independent experiments and are plotted on a logarithmic scale.

5. $\quad \log P$ data

Equal volumes of octanol and NaCl -saturated water were stirred at room temperature for 24 hours, and separated to give octanol-saturated water and water-saturated octanol. Five standard concentrations ($5,10,20,40$ and $60 \mu \mathrm{M}$) of the complexes were prepared from the octanol-saturated water. Analysis using UV / vis spectroscopy was used to obtain a calibration curve of absorbance vs. concentration for each complex at its maximum absorbance. Accurate amounts of the complexes were dissolved in the octanol-saturated water (25 mL) to make up a concentration of $50 \mu \mathrm{M} .3 \mathrm{~mL}$ of octanol-saturated water containing the complex was placed in a centrifuge tube and 3 mL of water-saturated octanol was layered on top. Six samples prepared in this manner were shaken for 4 hours using a vibrax machine at $500 \mathrm{gmin}^{-1}$. The layers were separated and the octanol-saturated water layer was retained for analysis using UV / vis spectroscopy. The average concentration of the six runs was calculated using the calibration graph and maximum absorbance for each complex. Subtraction of the average concentration obtained from the concentration of an unshaken sample in octanol-saturated water gave the final $[C]_{\text {org. }}$. The $[C]_{\text {org }}$ and $[C]_{a q}$ were used to determine the partition coefficient $\log P$.

Fig. S9 Bar chart to show $\log P$ values for complexes 3a-3e.

