Np(V) complexation with propionate in 0.1 – 4 M NaCl solutions at 20-85°C†

Supporting information

Aleksandr N. Vasiliev^{1,3}, Nidhu L. Banik^{*,1}, Rémi Marsac¹, Daniel R. Froehlich^{1,2}, Jörg Rothe¹,

Stepan. N. Kalmykov³, Christian M. Marquardt¹

*,¹Karlsruher Institut f
ür Technologie (KIT), Institut f
ür Nukleare Entsorgung, P.O. Box 3640, 76021 Karlsruhe, Germany.

²Ruprecht-Karls-Universität Heidelberg, Physikalisch Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg,Germany

³Radiochemistry Division, Chemistry Department, Lomonosov Moscow StateUniversity, Moscow 119992, Russia.

*Email: nidhu.banik@kit.edu

Table caption

Table S1: Stability constants for the formation of 1:1 complex (NpO₂⁺ + Prop⁻ = NpO₂(Prop))measured in 0.51 m NaCl solution as a function of temperature (23–85 °C), and extrapolated to I = 0.

Temperature /°C [NaCl] / molal		$Log\beta_0(T)$	
20	0.506	Average ± 16	
20	0.506	1.53 ± 0.10	
23	0.506	1.20 ± 0.07	
40	0.306	1.51 ± 0.06	
40	0.306	1.41 ± 0.10	
70	0.306	1.48 ± 0.10	
/0	0.506	1.57 ± 0.10	
85	0.506	1.67 ± 0.13	

Table S2: Composition of EXAFS samples 1-4.

Table S1

Sample	[Np(V)] / mmol/L	[propionate ⁻] / mol/L	pHc	[NaCl] / molal
1	0.77	0.48	5.5	0.51
2	0.77	0.48	5.1	1.02
3	0.77	0.48	5.0	2.09
4	0.77	0.48	5.0	4.37

Table S2

Figure caption

Figure S1:(a) Np(V) absorption spectra for various propionate concentration (I = 0.51m; T = 85°C, pH_c = 5.0). (b) Example of a deconvoluted spectrum ([Prop] = 0.10m; I = 0.51m; pH_c = 5.0, T = 85°C).

Figure S2:(a) Np(V) absorption spectra for various propionate concentration (I = 3.14 m; T = 23°C, pH_c = 5.0). (b) Example of a deconvoluted spectrum ([Prop] = 0.14 m; I = 3.2 m; pH_c = 5.0, T = 23°C).

Figure S3:Np(V) absorption spectra for NpO₂⁺ aqueous ion and the EXAFS sample 1 (I = 0.51 m; T = 23°C, pH_c = 5.0, [Prop]_{tot} = 0.48 M). Deconvolution of the later spectrum shows that approximately 95% of the NpO₂(Prop) complex is formed.

Figure S4: Possible structural scheme of Np(V)-propionate complex in the solution a) Bidentate mode b) Monodentate mode.

Figure S1

Figure S2

Figure S3

Figure S4