Supplementary Information

On the structure of $\mathrm{H}_{2} \mathrm{TiO}_{3}$-a short discussion on "Lithium recovery from salt lake brine by $\mathrm{H}_{2} \mathrm{TiO}_{3}$ "

Cheng-Long Yu,*a Fei Wang, ${ }^{\text {a }}$ Shu-Yao Cao, ${ }^{a}$ Dan-Peng Gao, ${ }^{a}$ Huai-Bing Hui, a, b Ying-Yan Guo ${ }^{\text {c }}$ and Dao-Yi Wang ${ }^{\text {a }}$
(${ }^{a}$ School of Materials Science and Engineering, Shaanxi University of Science \& Technology, Xi'an 710021, China; ${ }^{b}$ Technology Research Institute, Technical Center at Dongfeng Commercial Vehicle Company Limited, Wuhan 430056, China; ${ }^{c}$
College of Resources and Environment, Shaanxi University of Science \& Technology,
Xi'an 710021, China)

* To whom correspondence should be addressed.

Address: School of Materials Science and Engineering, Shaanxi University of Science \& Technology, Weiyang District, Xi'an City, Shaanxi Province, 710021, China;

E-mail: johnyucl@aliyun.com (Prof. C.-L. Yu);

Tel.: +86-29-86168688;
Fax: +86-29-86168688.

Fig. S1 Simulated XRD patterns of $\mathrm{Li}_{2} \mathrm{TiO}_{3}$ (left column) and the relative intensity variation of peak ($\overline{1} 33$) and peak ($\overline{2} 06$) by substitution of Li^{+}with H^{+}(right column): (a) H^{+}substituting Li^{+}from 0% to 100%; (b) H^{+}substituting $\mathrm{Li} 2^{+}$from 0% to 100%; (c) H^{+}substituting Li^{+}from 0% to 100%.

Fig. S2 The structure of $\mathrm{H}_{2} \mathrm{TiO}_{3}$ with reasonable OH bond length (a), the small orange, large blue and medium red balls correspond to H, Ti, and O atoms; and the simulated XRD pattern (b). Note that the intensity of peak (133) and that of peak ($\overline{2} 06$) decrease by 19% and 7% compared with that of $\mathrm{Li}_{2} \mathrm{TiO}_{3}$, respectively.

Table S1. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for $\mathrm{H}_{2} \mathrm{TiO}_{3}$.

Atom	x	y	z	U_{eq}
H1	0.13958	0.90588	0.03568	$0.0147(10)$
H2	0	0.26356	0.4434	$0.0161(15)$
H3	0.10555	0.58444	0.23604	$0.0040(8)$
Ti1	0	0.41749	0.25	$0.00581(6)$
Ti2	0	$0.74971(6)$	0.25	$0.00575(7)$
O1	$0.14116(15)$	$0.26356(12)$	$0.13720(7)$	$0.0054(2)$
O2	$0.10555(14)$	$0.58444(16)$	$0.13719(7)$	$0.00549(18)$
O3	$0.13958(15)$	$0.90588(14)$	$0.13454(7)$	$0.0056(2)$

