Supporting Information (SI)

Luminescent Copper(I) Halide and Pseudohalide Diimine Complexes: Simple Structures But Complicated Excited State Behavior

Jörn Nitsch,^a Christian Kleeberg,^b Roland Fröhlich,^c and Andreas Steffen*^a

^a Institut für Anorganische Chemie, Julius-Maximilians- Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

^b Institut für Anorganische und Analytische Chemie, Technische Universität Carolo-Wilhelmina zu Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

^c Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster, Germany

Table of contents

Figure S1.	Time-resolved ¹ H NMR spectrum of 1 in CDCl ₃	S2
Figure S2.	Powder XRD pattern 5·MeCN	S2
Figure S3.	Absorption and emission spectra of 1-4	S3
Figure S4.	Absorption and emission spectra of 5 and 6	S3
Figure S5.	Excitation and emission spectra of 1 at RT and 4 K	S4
Figure S6.	Excitation and emission spectra of 2 at RT and 4 K	S4
Figure S7.	VT emission spectra of 2 at RT and 77 K	S5
Figure S8.	Concentration dependent emission spectra of 2 at 77 K	S5
Figure S9.	Excitation and emission spectra of 6 at RT and 22 K	S 6
Table S1.	Geometric parameters from X-ray diffraction and DFT studies of 1-4	S 6
Table S2.	Cartesian coordinates of S_0 (opt) of 1	S 7
Table S3.	Cartesian coordinates of T_1 (opt) of 1	S 8
Table S4.	Cartesian coordinates of S_0 (opt) of 2	S 9
Table S5.	Cartesian coordinates of T_1 (opt) of 2	S 10
Table S6.	Cartesian coordinates of S_0 (opt) of 2π	S 11
Figure S10.	MO diagram of 2π	S13
Table S7.	Cartesian coordinates of T_1 (opt) of 2π	S 13
Table S8.	Cartesian coordinates of S_0 (opt) of 3	S 15
Table S9.	Cartesian coordinates of S_0 (opt) of $4m$	S 16
Table S10.	Cartesian coordinates of S_0 (opt) of 5	S 17
Table S11.	Cartesian coordinates of T_1 (opt) of 5	S 18
Table S12.	TD-DFT results for 1	S 19
Table S13.	TD-DFT results for 3	S 19
Table S14.	TD-DFT results for 2π	S 20
Details of sir	ngle crystal X-ray and powder diffraction studies	S21

Figure S1. ¹H NMR (200 MHz) spectrum of [CuI(dtbphen)] (1) in deuterated chloroform with signals corresponding to 1 at 8.34 ppm, 7.96 ppm, 7.81 ppm, 1.86 ppm and signals of free dtbphen at 8.14 ppm, 7.74-7.67 ppm and 1.60 ppm. Time resolved measurements show the decomposition of 1 in solution, as indicated by the decreasing ratio between the signals of the *tert*-butyl protons of the complex and the free ligand.

Figure S2. Experimental powder diffraction pattern (black) and predicted powder diffraction pattern calculated on the basis of the crystal structure of $5 \cdot \text{MeCN}$ (red).

Figure S3. Normalized solid state absorption (left) and emission (right) spectra of complexes 1 (black), 2 (red), 3 (blue) and 4 (orange).

Figure S4. Normalized solid state absorption (left) and emission (right) spectra of complexes 5 (black) and 6 (red).

Figure S5. Normalized solid state excitation (dashed) and emission (solid) spectra of [CuI(dtbphen)] (1) at room temperature (black) and at 4 K (blue).

Figure S6. Normalized solid state excitation (dashed) and emission (solid) spectra of [CuBr(dtbphen)] (2) at room temperature (black) and at 4 K (blue).

Figure S7. Variable temperature emission spectra of [CuBr(dtbphen)] (2) (298 K black and 77 K blue) recorded in the solid state.

Figure S8. Normalized concentration dependent emission spectra of [CuBr(dtbphen)] (2) at 77 K in a frozen glass of 2-MeTHF.

Figure S9. Normalized solid state excitation (dashed) and emission (solid) spectra of $[Cu_2(\mu^2 - I)_2(dmphen)_2]$ (6) at room temperature (black) and at 22 K (blue).

Entry	d(Cu-X)	d(Cu-X)	d(Cu-N) [Å]	d(Cu-N) [Å]	τ(Cu-X)	τ(Cu-X)
Entry	[Á] exp.	[Å] calc.	exp.	calc.	[°] exp. ^{c)}	[°] calc. ^{c)}
1	2.443	2.476	2.064, 2.086	2.102	48.7	48.2
2 ^{a)}	2.298	2.318	2.065, 2.086	2.099	40.6	35.5
3	2.147	2.246	2.075, 2.093	2.091	39.4	6.4
4m ^{b)}	1.853	1.894	2.030, 2.054	2.099	61.7	12.5

Table S1. Geometric parameters obtained from single crystal X-ray diffraction experiments

 compared to the parameters obtained from the calculated optimized structures.

^{a)} From Reference ^[1]

^{b)} [CuCN(dtbphen)×CuCN]_∞ (4) was replaced by its monomeric fragment [CuCN(dtbphen)] (4m) ^{c)} defined as follows: angle between plane (N1, N10, C13, C14) and plane (N1, Cu, X)

С	4,74195100	0.04369000	1.59063500
Č	3.41230200	-0.33414000	0.91077800
Č	2.54441600	-1.06304100	1.94886500
Č	3.44919600	2.04954800	-0.01761200
Č	3.70836900	-1.26900300	-0.28041700
Č	2 70050900	0 90923300	0 37385400
č	2.81214800	3 17241400	-0 49597400
Č	1 40294200	3 19913700	-0 56160200
č	0 67443500	4 35441200	-0.99511100
Č	0 72243600	2.02412300	-0 16396400
Č	-0 68894900	4 35248100	-0 99457300
č	-0.72960000	2.02191700	-0 16381800
Č	-2 54354500	-1 07026400	1 95009800
č	-1.41381500	3.19504600	-0.56072300
Č	-2 70425600	0 90067400	0 37382400
Č	-2.82286200	3.16421300	-0.49411700
Č	-3.41191600	-0.34565800	0.90934400
Č	-4.74501600	0.02628500	1.58559400
č	-3.45640200	2.03920300	-0.01604500
Č	-3 70086600	-1 28224400	-0 28225700
Ĥ	5.16387100	-0.84966200	2.06572700
Н	4 60425700	0.80312300	2 37160900
Н	5 49614500	0 40611300	0.88170600
Н	3.10771700	-1.90868200	2.36201400
Н	4 53124700	2.03618600	0.05887200
Н	2.26621600	-0.39831300	2.77679900
Н	4.23540700	-2.16397900	0.07484400
Н	3.38422300	4.04681800	-0.80554700
Н	4.34579900	-0.77222900	-1.02389900
Н	1.62975900	-1.47813400	1.50891400
Н	2.78533500	-1.59746300	-0.77062900
Н	1.23207600	5.23425500	-1.31407700
Н	-2.27141400	-0.40422600	2.77901500
Н	-1.62523800	-1.48089100	1.51349900
Н	-1.24934200	5.23074400	-1.31305900
Н	-3.10395200	-1.91873600	2.36139900
Н	-4 61297300	0.78669200	2 36660500
Н	-3 39767300	4 03713800	-0.80279400
Н	-5 16402200	-0.86880100	2.05998600
Н	-4 53834800	2.02277700	0.06120500
Н	-5 49896500	0 38481800	0 87441700
Н	-2.77523300	-1 60687100	-0 77010400
Н	-4.22484400	-2.17939600	0.07202700
Н	-4.33862800	-0.78849900	-1.02746000
N	1.37107500	0.90573000	0 25541100
N	-1.37481100	0.90131200	0.25490800
Cu	-0.00052800	-0.67645700	0.05880800
I	0.00662600	-2.94590500	-0 93093200
-	5.00002000		0.72072400

Table S2. Cartesian coordinates of the optimized ground state (S_0) of complex 1

Table S3. Cartesian coordinates of the optimized T_1 state of complex 1

C	4 7514850	0 1156480	1 4303070
C	4.7514050	-0.1130460	0.9011240
C	3.3848140	-0.4239350	0.8011240
C	2.5399060	-1.12//390	1.8/84400
C	3.4277910	2.0129800	0.0764280
C	3.6265860	-1.3505560	-0.4072700
С	2.6915000	0.8547050	0.3202610
С	2.8087570	3.1984830	-0.3635080
С	1.4231840	3.2386630	-0.4813920
С	0.6806410	4.4188950	-0.8360430
С	0.7009210	2.0436130	-0.1965810
С	-0.6819430	4.4187350	-0.8359720
Č	-0 7015760	2 0434510	-0 1965250
Ĉ	-2 5396310	-1 1285350	1 8783150
C	1 4241660	2 2282200	0.4812550
C	-1.4241000	0.8540020	0.2202520
C	-2.0916400	0.6540020	0.3203330
C	-2.809/210	5.19//900	-0.3032340
C	-3.384/2/0	-0.4249430	0.8010060
C	-4.7515930	-0.11/2880	1.4391560
C	-3.4284400	2.0120990	0.0766480
С	-3.6259640	-1.3515450	-0.4075120
Н	5.1690660	-1.0434630	1.8490940
Н	4.6681140	0.6074640	2.2602680
Н	5.4797050	0.2633590	0.7130660
Н	3.0827200	-2.0005710	2.2617920
Н	4.5002280	2.0030100	0.2314710
Н	2.3336150	-0.4548410	2.7200200
Н	4.0836320	-2.2923310	-0.0761330
Н	3.4031100	4.0876590	-0.5691530
Н	4.3060320	-0.8736410	-1.1245940
Н	1 5834300	-1 5077000	1 5004560
Н	2 6987080	-1 5976480	-0.9313380
Н	1 2356720	5 3233390	-1 0838690
н	-2 3336480	-0.4556480	2 7199780
и и	1 5820760	1 5080030	1 5003500
и П	1 2372130	5 3230460	1.0837/30
11	-1.2372130	2.0016200	-1.0857450
П	-5.0621510	-2.0010200	2.2013530
п	-4.0080150	0.005/000	2.2601180
Н	-3.4043090	4.0868280	-0.5688180
H	-5.1688480	-1.0453170	1.848/010
Н	-4.5008680	2.0018480	0.2317270
Н	-5.4798760	0.2615010	0.7127760
Н	-2.6979080	-1.5982540	-0.9314530
Н	-4.0827100	-2.2935210	-0.0765340
Н	-4.3054690	-0.8748190	-1.1249040
Ν	1.3437670	0.8536070	0.1220880
Ν	-1.3441070	0.8532880	0.1221570
Cu	-0.0000710	-0.5538020	-0.0114670
Ι	0.0005480	-2.9028990	-0.8235640

Table S4. Cartesian coordinates of the optimized ground state (S_0) of complex 2
--

Br	-0.00075800	-3.08079500	-0.90296700
Cu	0.00014900	-0.91381100	-0.08022200
Ν	-1.37656000	0.65282900	0.16075900
N	1.37685600	0.65250100	0.16045300
C	-2.70889000	0.63896300	0 26210100
C	-3 45421000	1 82398400	0.03948100
C	-3 41909300	-0 67425100	0.59602900
C	-2 64459700	-1 44897900	1 67206500
C	3 45461500	1 82370000	0.04128900
C	0.68104400	1.02570000	_0 59027700
C	1 40732200	3.03682700	-0.37027700
C	2 70016400	0.62840400	-0.32421300
C	2.70910400	1,81700100	0.20239300
C	0.72008900	1.81/09100	-0.09598400
C	3.41910900	-0.6/513100	0.59524000
C	-0.72619000	1.81/19200	-0.09418300
C	-1.40662600	3.03688500	-0.32519200
C	2.64500300	-1.44995500	1.6/152100
C	-0.68012400	4.24276300	-0.59086300
C	3.51620000	-1.50967900	-0.69527/00
C	2.81499500	3.00273400	-0.26491500
С	-4.83807000	-0.42232900	1.12728900
С	-2.81435500	3.00282800	-0.26693300
С	-3.51738800	-1.50930800	-0.69407200
С	4.83856700	-0.42415700	1.12560200
Н	-4.53621000	1.80110400	0.10910600
Н	-3.20703600	-2.35001400	1.94527000
Н	-2.50555100	-0.84334000	2.57688500
Н	-1.66336600	-1.78373700	1.31531800
Н	4.53655600	1.80078800	0.11173600
Н	1.24240400	5.15637200	-0.78083700
Н	2.50717000	-0.84471500	2.57679100
Н	3.20703100	-2.35155200	1.94371700
Н	1.66322000	-1.78380800	1.31543600
Н	-1.24130600	5.15637900	-0.78194500
Н	2.52439100	-1.76272500	-1.08671100
Н	4.03870600	-2.45155200	-0.48477500
Н	4.08095000	-0.97239500	-1.46867500
Н	3 38417300	3 91440200	-0 44430300
Н	-5 27354200	-1 37985600	1 43529800
Н	-5 50527100	-0.00102300	0.36546700
Н	-4 84133300	0.24138100	2 00194100
н	-3 38338500	3 91440700	-0 44724100
н	-2 52590600	-1 76295600	-1.08505000
Н	-4 08233700	-0.97209000	-1.00375700 -1.46736700
н	-4.04021900	-2 45084400	-0.48286500
н	5 505/1/00	-0.00280100	0.4020000
и Ц	5 27277500	1 38206000	1 /2281200
н Ц	J.27377300 A 94290900	-1.36200000	2.00060500
п	4.04200000	0.23909000	2.00000300

|--|

Br	-0.00001239	-2.85751786	-1.10298225
Cu	0.00000836	-0.78254310	-0.10449692
Ν	-1.33917477	0.61920825	0.12153669
Ν	1.33916409	0.61921672	0.12155247
С	-2.68919960	0.54674313	0.28190169
Č	-3 44120534	1 72248990	0.05920996
Č	-3 34951853	-0 76902501	0.68932219
C	-2 46926517	-1 53538457	1 68949141
C	3 44119459	1 72248915	0.05916023
C	0 70012554	4 19805638	-0 59809823
C	1 42150025	3 01871501	-0.351/18355
C	2 68010535	0.54674708	0.28180446
C	2.08919555	1 70712112	0.20109440
C	2 24052242	0.76001165	-0.13772934
C	5.54955542	-0.70901105	0.06955050
C	-0.72053195	1./9/11/94	-0.15//5092
C	-1.42152116	3.018/1499	-0.55140500
C	2.4691/630	-1.53551800	1.68929403
C	-0.70015311	4.19805735	-0.59808525
C	3.61740086	-1.629/1205	-0.55947603
C	2.85024611	2.92033140	-0.27569264
С	-4.69415202	-0.50554089	1.38636698
С	-2.85026321	2.92033551	-0.27563631
С	-3.61709951	-1.62982973	-0.55947483
С	4.69402599	-0.50548329	1.38662510
Н	-4.52141287	1.67750388	0.15696805
Н	-3.00765516	-2.41861794	2.05489655
Н	-2.20986565	-0.90969897	2.55215937
Н	-1.54261200	-1.91768177	1.24126395
Н	4.52140616	1.67749809	0.15687814
Н	1.24884731	5.12182898	-0.77357431
Н	2.20951318	-0.90989048	2.55192417
Н	3.00760772	-2.41869261	2.05478144
Н	1.54266368	-1.91792647	1.24086890
Н	-1.24887956	5.12183084	-0.77354259
Н	2 69453936	-1 85763910	-1 10306370
Н	4 08045100	-2.58339285	-0 27251630
Н	4 30018968	-1 11162849	-1 24431762
Н	3 45937588	3 80562525	-0.45074888
Н	-5 10386790	-1 45752667	1 74534235
н	-5 43854837	-0 07434494	0 70753268
н	-4 58266095	0 16264140	2 24932954
ц	3 45030531	3 80563636	0 45064873
н	-2.60/12205	-1 85770770	-0.450040/5
и П	-2.07412393	-1.05//0//9 1.11185/42	-1.10209040 1.24446722
п u	-4.29901907	-1.1110J442 2.59252415	-1.24440/23
п	-4.06011020	-2.30333413	-0.2/233030
п	J.4J047721 5 10275077	-0.0/41/233	0./0/94///
Н	5.103/59//	-1.45/40555	1./4559223
Н	4.58233740	0.16262176	2.24962[6]

Table S6	Cartesian	coordinates	of the o	ptimized	ground	l state ((\mathbf{S}_0) o	f comp	lex 2	Ľπ
----------	-----------	-------------	----------	----------	--------	-----------	--------------------	--------	-------	----

С	-3.265574	4.835264	-1.781337
ĉ	2 540070	2 (00721	0.400000
C	-3.540270	3.000/31	0.406695
С	-3.337278	3.471904	-1.093249
С	-4.529578	2.728906	-1.696870
C	-0 849611	3 313295	-1 627559
~	0.049011	5.515255	1.02/555
C	-2.058950	2.6/0962	-1.299518
С	0.274328	2.580951	-1.891110
C	1 405155	3 524233	1 390817
ä	2 007514	4 (04001	1 101052
C	3.90/314	4.004001	1.101033
С	0.183853	2.999542	1.715132
С	4.049802	3.205297	-0.810970
Ċ	3 8/0077	3 239107	0 704461
Č	5.049977	5.259107	0.704401
C	0.21/94/	1.183488	-1.83/961
С	2.474224	2.679992	1.044186
C	-1.006443	0.614333	-1,442019
a a	0.005000	1 (11120	1 720720
C	0.003988	1.011130	1./39/20
С	-1.223462	0.998776	2.115672
С	1.333615	0.359418	-2.156229
C	-4 927478	-2 425088	-1 419931
ä	1.927170	2.120000	1 410500
C	4.933/62	2.425360	1.412530
С	1.116235	0.826932	1.379960
С	-1.113551	-0.821731	-1.379095
Ĉ	_1 332805	-0 348494	2 160232
Č	-1.332803	-0.348494	2.100252
C	1.22/33/	-0.988144	-2.1124/8
С	-0.001072	-1.603331	-1.737729
C	-3 844140	-3 239934	-0 712401
c	2 4 6 9 2 1 2	0 (77070	1 04/200
C	-2.408212	-2.6//8/3	-1.046598
С	1.006162	-0.608842	1.444446
С	-0.219083	-1.175119	1.841821
C	-4 047665	-3 211801	0 802587
ä	2.0205(1	3.211001	1 105014
C	-3.9/8561	-4.683945	-1.195614
С	-0.175611	-2.992133	-1.712662
С	-1.396140	-3.519582	-1.389908
C	-0 278269	-2 572376	1 897311
ä	0.270209	2.572570	1 204510
C	2.054422	-2.66/8/1	1.304518
С	0.844139	-3.307358	1.634567
С	4,525176	-2.731072	1.701129
Ċ	2 220074	-2 171551	1 000067
C	5.550974	-3.4/1554	1.090007
С	3.532615	-3.689317	-0.401946
С	3.256968	-4.834686	1.786413
н	-4.228318	5.330140	-1.642216
ц	-2 503007	5 401006	_1 350010
п	-2.503097	5.491900	-1.550012
Н	-3.093194	4.732976	-2.855311
Н	-4.488480	4.201995	0.587401
н	-5 430748	3 334084	-1 575345
11	2 727512	4 212045	0 011701
п	-2.737512	4.512045	0.011/91
Н	-0.810005	4.391993	-1.663955
Н	-4.373293	2.561281	-2.765301
н	-3 575782	2 738903	0 938795
11	1 710(17	1 7(0100	1 010077
н	-4./1861/	1./09198	-1.21302/
Н	3.318109	5.371144	0.660447
Н	1.541084	4.594502	1.388059
Н	-0.648186	3.645938	1,970433
11 TT	2 222212	2 0//705	1 20/01/4
н	3.332213	3.000/00	-1.304914
Н	1.208737	3.061201	-2.159593
Н	5.006423	5.036630	1.001185
н	3 800897	4 769232	2 256175
11		1.107232	2.2JUI/J
н	2.020190	3.3/0436	-1.052958
Н	-2.077010	1.620142	2.361521
Н	3.962574	2.195989	-1.220714
н	-4 904633	-1 366355	-1 155625
11	1.0104000	1.000000	1.10000
н	-4.810444	-2.506609	-2.503645
Н	2.270875	0.823207	-2.441881

Н	5.919376	2.806587	1.139045
Н	-5.912793	-2.811411	-1.152217
Н	-2.270448	-0.810365	2.447613
Н	4.820304	2.512569	2.496175
Н	4.906079	1.365271	1.154300
Н	-3.964117	-2.203289	1.214875
Н	-5.047412	-3.581097	1.041276
Н	2.082670	-1.607213	-2.358229
Н	-3.791542	-4.764463	-2.270222
Н	-4.996897	-5.038520	-1.016724
Н	-3.328814	-3.872272	1.296079
Н	-1.213418	-3.050273	2.167467
Н	0.658107	-3.636789	-1.966886
Н	-3.308576	-5.371426	-0.676464
Н	-1.529234	-4.590211	-1.386389
Н	4.716374	-1.772001	1.216886
Н	3.565959	-2.739995	-0.934990
Н	4.369444	-2.562835	2.769531
Н	0.802708	-4.385906	1.672882
Н	2.730112	-4.314196	-0.805098
Н	5.424772	-3.338584	1.579706
Н	4.481326	-4.201303	-0.583569
Н	3.086608	-4.731844	2.860646
Н	2.492137	-5.489534	1.364499
Н	4.218297	-5.331830	1.645710
N	-2.099957	1.352714	-1.166021
N	2.296441	1.364217	1.004233
N	-2.293255	-1.361739	-1.005587
N	2.097980	-1.349872	1.168827
Cu	-3.417726	0.051547	-0.091455
Cu	3.419221	-0.054833	0.094126
Br	-4.973352	0.459976	1.541635
Br	4.976161	-0.464983	-1.537979

Figure S10. Molecular orbital diagram of 2π showing selected frontier orbitals.

Table S7. Cartesian coordinates of the opt	timized T_1 of com	plex 2π
--	----------------------	-------------

С	-3.265574	4.835264	-1.781337
С	-3.540270	3.688731	0.406693
С	-3.337278	3.471904	-1.093249
С	-4.529578	2.728906	-1.696870
С	-0.849611	3.313295	-1.627559
С	-2.058950	2.670962	-1.299518
С	0.274328	2.580951	-1.891110
С	1.405155	3.524233	1.390817
С	3.987514	4.684801	1.181853
С	0.183853	2.999542	1.715132
С	4.049802	3.205297	-0.810970
С	3.849977	3.239107	0.704461
С	0.217947	1.183488	-1.837961
С	2.474224	2.679992	1.044186
С	-1.006443	0.614333	-1.442019
С	0.005966	1.611130	1.739726
С	-1.223462	0.998776	2.115672
С	1.333615	0.359418	-2.156229
С	-4.927478	-2.425088	-1.419931
С	4.933762	2.425360	1.412530
С	1.116235	0.826932	1.379960
С	-1.113551	-0.821731	-1.379095
С	-1.332805	-0.348494	2.160232
С	1.227337	-0.988144	-2.112478

C	-0 001072	-1 603331	-1 737729
C	0.001072	1.000000	1.131123
С	-3.844140	-3.239934	-0.712401
C	-2 468212	-2 677873	-1 046598
C	2.400212	2.077075	1.040330
С	1.006162	-0.608842	1.444446
C	-0 219083	-1 175119	1 841821
C	0.219005	1.1/5115	1.041021
С	-4.047665	-3.211801	0.802587
C	-3 978561	-1 683915	-1 19561/
C	5.970301	4.003945	1.199014
С	-0.175611	-2.992133	-1.712662
C	-1 206140	-3 510592	_1 200000
C	-1.390140	-3.319302	-1.309900
С	-0.278269	-2.572376	1.897311
C	2 054422	2 667071	1 204510
C	2.034422	=2.00/0/1	1.304310
С	0.844139	-3.307358	1.634567
C	4 505170	2 721072	1 701100
C	4.5251/6	-2./310/2	1./01129
С	3.330974	-3.471554	1.098067
â	2 5 2 0 6 1 5	2 600217	0 401040
C	3.532615	-3.689317	-0.401946
С	3.256968	-4.834686	1.786413
	3.200900	1.001000	1 6400110
Н	-4.228318	5.330140	-1.642216
н	-2 503097	5 491906	-1 358012
	2.0000000	0.191900	1.000012
Н	-3.093194	4./329/6	-2.855311
н	-4 488480	4 201995	0 587401
11	1.100100	1.201999	0.007101
H	-5.430748	3.334084	-1.575345
U	-2 737512	1 312045	0 811701
11	2.13/312	4.512045	0.011/91
H	-0.810005	4.391993	-1.663955
TT	1 272202	2 561201	2 765201
п	-4.5/5295	2.301201	-2.703301
Н	-3.575782	2.738903	0.938795
тт	1 710(17	1 7 6 0 1 0 0	1 01 00 7
н	-4./1861/	1./09198	-1.21302/
Н	3.318109	5.371144	0.660447
	1 541004	4 504500	1 200050
Н	1.541084	4.594502	1.388059
Н	-0.648186	3.645938	1.970433
	2 220212	0.00000	1 004014
Н	3.332213	3.866/85	-1.304914
н	1 208737	3 061201	-2 159593
	1.200/07	5.001201	1 001105
Н	5.006423	5.036630	1.001185
н	3 800897	4 769232	2 256175
	5.000057	1.709292	2.230173
H	5.050196	3.570436	-1.052958
U	-2 077010	1 620142	2 361521
11	2.077010	1.020142	2.501521
H	3.962574	2.195989	-1.220714
тт	1 001622	1 266255	1 155605
п	-4.904033	-1.300333	-1.100000
Н	-4.810444	-2.506609	-2.503645
TT	2 270975	0 000007	2 //1001
п	2.2/00/5	0.023207	-2.441001
Н	5.919376	2.806587	1.139045
	E 010702	0 011411	1 1 5 0 0 1 7
Н	-5.912/93	-2.811411	-1.15221/
Н	-2.270448	-0.810365	2.447613
	1 000004	0.010000	0 406175
Н	4.820304	2.512569	2.4961/5
н	4 906079	1 365271	1 154300
	1.900079	1.0002/1	1.131300
Н	-3.96411/	-2.203289	1.2148/5
н	-5 047412	-3 581097	1 041276
	0.000	3.001037	1.011270
H	2.082670	-1.607213	-2.358229
U	-3 791542	-1 761163	-2 270222
11	5.791342	4.704405	2.2/0222
H	-4.996897	-5.038520	-1.016724
U	-3 32881/	-3 870070	1 296079
п	-3.320014	-3.012212	1.290079
H	-1.213418	-3.050273	2.167467
тт	0 659107	2 626700	1 066006
п	0.030107	-3.030709	-1.900000
Н	-3.308576	-5.371426	-0.676464
TT	1 500004	4 600011	1 20/200
п	-1.329234	-4.390211	-1.300389
Н	4.716374	-1.772001	1.216886
	2 6 6 6 5 0	2 720005	0 0 2 4 0 0 0
н	3.365959	-2./39995	-0.934990
Н	4.369444	-2.562835	2,769531
	0.000700	4 205000	1 070001
Н	0.802/08	-4.385906	1.6/2882
н	2.730112	-4.314196	-0.805098
		1.011100	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Н	5.424/72	-3.338584	T'21/02/02
н	4,481326	-4.201303	-0.583569
	2.000000	1.01010	0.000000
н	3.086608	-4./31844	2.860646
Н	2,492137	-5,489534	1.364499
		E 001000	1 0 0 1 1 0 0
Н	4.218297	-5.331830	1.645710
N	-2 099957	1 352714	-1 166021
T 4		T . 222 / T I	T • T 0 0 0 C T

Ν	2.296441	1.364217	1.004233
Ν	-2.293255	-1.361739	-1.005587
Ν	2.097980	-1.349872	1.168827
Cu	-3.417726	0.051547	-0.091455
Cu	3.419221	-0.054833	0.094126
Br	-4.973352	0.459976	1.541635
Br	4.976161	-0.464983	-1.537979

Table S8 Cartesian coordinates of the optimized ground state (S_0) of complex 3

Cu	13.34598600	9.50106100	2.64759100
Cl	14.59403300	10.36697800	0.99254800
Ν	12.75939100	10.00853600	4.58995000
С	13.11484300	11.05888400	5.36370200
С	11.84317500	9.09485000	5.03829600
С	11.50001300	7.96736400	4.18979400
Ν	12.10226400	7.85024100	2.96552900
С	10.25538900	5.92780100	3.81243200
С	14.14604100	12.06169200	4.83647700
С	11.81890700	6.80191100	2.15986300
С	11.22202400	9.20903100	6.31031300
С	10.26509500	8.23261300	6.74873500
С	9.94229500	7.17177900	5.95045600
С	12.52300600	11.22075700	6.64768800
Ċ	10.55517900	7.01768700	4.66130600
С	13.56892900	12.76793200	3.58528000
С	11.58983600	10.31338900	7.11248400
Ċ	15.45690700	11.31918800	4.48435200
Ċ	10.87964900	5.82062000	2,58404100
Ċ	12.51175200	6.69626800	0.79761900
Ċ	12.08470900	7.89839000	-0.07978000
Ċ	14.47876400	13.14267600	5.88566100
Ċ	14.04603600	6.68731800	0.99649500
Ċ	12.12054900	5.40043700	0.05752800
Н	9.53755300	5.18018800	4.13455100
Н	9.80807600	8.35524600	7.72530700
Н	9.22171000	6.42822000	6.27522500
Н	12.80758100	12.06125900	7.26242700
Н	13.38946300	12.06416100	2.76925700
Н	12.63504700	13.28932800	3.82751500
Н	14.29121100	13.50479500	3.21913600
Н	11.13731400	10.43840700	8.09104100
Н	15.31005300	10.59419000	3.68038000
Н	16.19875300	12.04191300	4.12964100
Н	15.86461400	10.80648100	5.36377800
Н	10.65438100	4.98549600	1.93814900
Н	12.40906300	8.84903600	0.34970800
Н	12.55633600	7.81467200	-1.06430000
Н	10.99681000	7.91405400	-0.21728000
Н	14.90031600	12.71562100	6.80314300
Н	15.23117900	13.81491400	5.46284500
Н	13.60691900	13.75443900	6.14474600
Н	14.40400400	7.61959700	1.43952400
Н	14.35389200	5.84518400	1.62777900
Н	14.53708300	6.58839600	0.02305400
Н	12.39890200	4.50092000	0.61900400
Н	11.04988100	5.35954100	-0.17379100
Н	12.65828700	5.37024000	-0.89469700

С	7.65933500	17.94869800	34.08197900
Č	7,17439900	18.20730400	35.39503200
H	7.65545200	17.73966100	36.24077800
C	6.09653500	19.04872500	35.59619100
H	5.72539000	19.24108700	36.59778800
C	5 47551500	19 67243400	34 48992000
Č	6.00066600	19.38049200	33.20373800
Ċ	5.40925100	20.01906800	32,04299500
Č	4.32455700	20.91542500	32.23076900
Ċ	3.79389700	21,53549000	31.07645600
Н	2,96200700	22.22578500	31.17341500
С	4.34259300	21.26493100	29.83710600
Н	3.94432100	21.74677500	28.95699500
С	5.42969900	20.35537700	29.70654000
С	4.36554200	20.57101200	34.63923700
Н	3.98398800	20.76424100	35.63655100
С	3.80849200	21.17266200	33.54579200
Н	2.97262600	21.85658200	33.65133100
Н	7.60215700	15.21036500	33.71773200
Н	7.91744600	15.98531000	32.14327600
С	6.03556000	20.04432100	28.33383200
С	7.56265900	20.28754600	28.36870500
Н	8.05952600	19.64134800	29.09531900
Н	7.98961900	20.05793700	27.38720300
Н	7.78729600	21.33375300	28.60798800
С	5.72728900	18.56957700	27.97441700
Н	4.64534200	18.40017900	27.91869500
Н	6.16401400	18.33266700	26.99885300
Η	6.16066700	17.87926200	28.70049500
С	5.43987100	20.94090500	27.22852700
Н	5.60494500	22.00671900	27.42488000
Н	5.93630800	20.70090700	26.28367200
Н	4.36773200	20.76707300	27.08234900
С	8.34959300	17.07299400	29.83069400
Ν	7.05672600	18.52907700	33.01982900
Ν	5.92859600	19.74677800	30.80601700
Ν	8.96624100	16.34800100	29.11752200
Cu	7.37898900	18.23718700	30.96586900
С	8.84831200	17.00971100	33.85256200
С	9.49376200	16.56757100	35.18235600
Н	10.35600900	15.93405300	34.95434600
Н	9.85755400	17.41841200	35.77014000
Н	8.81159300	15.97281900	35.80039700
С	8.34895400	15.74194100	33.11596000
H	9.19246400	15.06700300	32.93838200
C	9.93183500	17.73183400	33.01774600
Н	9.55740200	18.02566100	32.03494900
Н	10.30067400	18.62212300	33.54081800
Н	10.77510100	17.05362100	32.85255500

Table S9. Cartesian coordinates of the optimized ground state (S_0) of complex 4m

|--|

С	5.3205584	-2.8308422	-0.0017740
Ċ	6 6029985	-0.6816611	-0.0014210
Ĉ	4 0903863	-3 4629053	-0.0013400
C	5 3706444	-1 4192791	-0.0010680
C	6 6028425	0.6829511	-0.0006500
C	2 0211/32	-2 6762162	-0.0000500
C	A 1372413	-0.7228591	0.0001300
C	5 370322415	1 4202041	0.0000720
C	J.J703224 A 1370743	0.7235071	0.0004090
C	4.13/0/43	2 1627992	0.0007010
C	-4.0906933	-3.402/003	0.0049040
C	2.0215404	2.0310432	0.0013030
C	-2.9213462	-2.0702082	0.0055/10
C	-5.5209874	-2.8303032	0.0041400
C	4.0896323	3.4636393	0.0023760
C	2.9205622	2.6/6/012	0.0025150
C	-5.3/08814	-1.4190011	0.001/640
C	-4.1373893	-0.7227451	0.0003470
C	-6.6031355	-0.6812061	0.000/490
C	-4.1370193	0.7237131	-0.0020090
С	-6.6027925	0.6834021	-0.0015450
С	-5.3701704	1.4205811	-0.0029730
С	-2.9202162	2.6766222	-0.0054150
С	-5.3195764	2.8321182	-0.0053130
С	-4.0891683	3.4637313	-0.0065550
Н	6.2467455	-3.4049813	-0.0026520
Н	7.5417816	-1.2348471	-0.0022930
Н	4.0094533	-4.5476713	-0.0018760
Н	7.5414976	1.2363551	-0.0008960
Н	1.9367471	-3.1424182	0.0001780
Н	-4.0101073	-4.5475643	0.0068000
Н	-1.9372161	-3.1426002	0.0039460
Н	6.2460045	3.4061803	0.0011050
Н	-6.2472465	-3.4045843	0.0052930
Н	4.0084583	4.5483873	0.0030980
Н	1.9360751	3.1427072	0.0033570
Н	-7.5419926	-1.2342651	0.0018440
Н	-7.5413736	1.2369321	-0.0023140
Н	-1.9356551	3.1424692	-0.0063700
Н	-6.2455485	3.4066003	-0.0061160
Н	-4 0078433	4 5484683	-0.0083770
N	2 9389742	-1 3518411	0.0005740
N	2,9386582	1 3523201	0.0016700
N	-2.9392012	-1 3518771	0.0011100
N	-2.9385172	1 3522461	-0.0031850
Cu	1 2968221	0.0002270	0.0014550
Cu	-1 2968691	-0 0004590	-0.0008700
I	-0.0014740	0.0014080	2 2016/02
I	0.0015640	-0.0030220	_2 2910562
1	0.0010010	0.0000220	2.2710302

Table S11. Cartesian coordinates of the optimized T_1 of complex 5

С	5.2573856	-2.8251820	-0.0013876
С	6.5342664	-0.6772370	-0.0007740
С	4.0165250	-3.4685919	-0.0013089
С	5.3040750	-1.4220340	-0.0007466
С	6.5331083	0.6867517	-0.0001279
С	2.8542415	-2.6871355	-0.0005698
С	4.0709985	-0.7112583	-0.0000319
С	5.3016352	1.4293773	0.0005869
С	4.0697737	0.7164576	0.0006003
С	-4.0169350	-3.4684953	0.0023647
С	5.2524506	2.8324336	0.0012880
С	-2.8545659	-2.6872144	0.0015976
С	-5.2577357	-2.8249247	0.0019641
С	4.0105025	3.4736285	0.0019812
С	2.8495792	2.6900188	0.0019184
С	-5.3042348	-1.4217710	0.0008217
С	-4.0710789	-0.7111455	0.0001118
С	-6.5343398	-0.6768134	0.0003372
С	-4.0696925	0.7165690	-0.0010356
C	-6.5330332	0.6871749	-0.0007841
С	-5.3014741	1.4296400	-0.0015130
С	-2.8492530	2.6899389	-0.0028001
С	-5.2520989	2.8326890	-0.0026900
С	-4.0100897	3.4737231	-0.0033553
Н	6.1845460	-3.3973976	-0.0019412
Н	7.4743473	-1.2286130	-0.0013187
Н	3.9367080	-4.5528628	-0.0018049
Н	7.4722451	1.2397365	-0.0001432
Н	1.8722667	-3.1595151	-0.0005011
Н	-3.9372552	-4.5527760	0.0032536
Н	-1.8726537	-3.1597178	0.0018957
Н	6.1786004	3.4062910	0.0012960
Н	-6.1849672	-3.3970219	0.0025279
Н	3.9287806	4.5577600	0.0025617
Н	1.8667797	3.1607033	0.0024587
Н	-7.4744824	-1.2280838	0.0008835
Н	-7.4721083	1.2402649	-0.0011496
Н	-1.8663912	3.1604993	-0.0033068
Н	-6.1781774	3.4066645	-0.0030801
Н	-3.9282302	4.5578440	-0.0042882
Ν	2.8634077	-1.3559368	0.0000731
Ν	2.8610334	1.3588998	0.0012268
Ν	-2.8635635	-1.3559833	0.0004941
Ν	-2.8608758	1.3588523	-0.0016608
Cu	1.2861939	-0.0008098	0.0008361
Cu	-1.2861983	-0.0015300	-0.0005420
Ι	-0.0010204	-0.0038822	2.2459929
Ι	0.0010213	-0.0052941	-2.2457190

Stata	Ene	ergy	Oscillator	Oscillator Transitions (9/)a	Classification
State	[eV] [nm]		strength f	strength f	
S_1	2.83	438	0.0003	H→L (77), H-3→L (18)	¹ XMLCT
S_2	3.32	374	0.0020	H→L+1 (83)	¹ XMLCT
S_3	3.48	356	0.0087	H-1→L (87)	¹ XMLCT
S_4	3.56	348	0.0416	H-2→L (85)	¹ XMLCT
S_6	3.99	311	0.0266	H-2→L+1 (88)	¹ XMLCT
S_{13}	4.56	272	0.0178	H-4→L+1 (58), H-7→L (27), H-6→L+1 (7)	¹ MLCT
S_{14}	4.70	264	0.0433	H-6→L+1 (42), H-4→L+1 (30), H-7→L (19)	¹ XMLCT
S ₁₉	4.94	251	0.5469	H-7→L (32), H-6→L+1 (23)	¹ XMLCT
Т.	2.00	620		H-4→L+1 (25), H-6→L+1 (17), H→L (11), H-7→L (11),	³ YMLCT
1]	1 ₁ 2.00		-	$H-3 \rightarrow L(7), H-2 \rightarrow L+1(6)$	AMLCI
T_2	2.36	525	-	H→L (59), H-3→L (16)	³ XMLCT

 Table S12. Vertical electronic excitation energies and main transitions describing selected

 Franck-Condon states of 1 obtained by TD-DFT calculations

^a Only major contributions >5% are given; H = HOMO, L = LUMO

Table S13. Vertical electronic excitation energies and main transitions describing selected
Franck-Condon states of 3 obtained by TD-DFT calculations

State	Energy		Oscillator	Transitions $(\frac{9}{6})^a$	Classification	
State	[eV]	[nm]	strength f			
S_1	2.60	477	0.0000	H→L (89)	¹ XMLCT	
S_2	3.21	386	0.0002	H→L+1 (92)	¹ XMLCT	
S_3	3.25	382	0.0009	$H-1 \rightarrow L (82), H-2 \rightarrow L (10)$	¹ XMLCT	
S_4	3.60	345	0.0294	H-2→L (74), H-1→L (9), H-8→L (7)	¹ XMLCT	
S_8	4.09	303	0.0215	H-2→L+1 (80), H-1→L+1 (6), H-8→L+1 (5)	¹ XMLCT	
S ₁₅	4.77	260	0.3453	H-7→L(27), H-6→L+1 (19), H→L+9 (9), H→L+5 (7)	¹ XMLCT	
T_1	2.45	505	-	H→L (86)	³ XMLCT	
T ₂	2.57	482	-	H-6→L+1 (52), H-7→L (14), H-10→L (5)	³ XMLCT	

^a Only major contributions >5% are given; H = HOMO, L = LUMO.

Table S14. Vertical electronic excitation energies and main transitions describing the first 50 Franck-Condon singlet states of 2π obtained by TD-DFT calculations

State	Energy (cm-1)	Wavelengt (nm)	h fosc	T2 (au**2)	TX (au)	TY (au)	TZ (au)
1	21842.3	457.8	0.000345013	0.00520	-0.05396	-0.04627	-0.01214
2	21852.7	457.6	0.000304825	0.00459	0.05028	0.04372	0.01235
3	26452.9	378.0	0.000184534	0.00230	0.00161	0.00147	-0.04787
4	26487.0	377.5	0.003201862	0.03980	-0.00527	-0.00622	0.19932
5	27895.6	358.5	0.023695304	0.27964	0.51169	-0.07684	-0.10911
6	27987.3	357.3	0.000277312	0.00326	-0.05514	0.00845	0.01224
7	29749.8	336.1	0.000304107	0.00337	-0.04932	0.00983	0.02892
8	29792.8	335.7	0.037469159	0.41404	-0.54270	0.11338	0.32658
9	30127.6	331.9	0.000187037	0.00204	-0.03330	-0.02912	0.00933
10	30133.8	331.9	0.000145430	0.00159	-0.02656	-0.02935	0.00472
11	30590.2	326.9	0.000001177	0.00001	-0.00279	-0.00095	-0.00200
12	30625.0	326.5	0.014070423	0.15125	0.38073	0.07939	0.00034
13	30922.6	323.4	0.000007374	0.00008	0.00312	-0.00049	-0.00828
14	31184.8	320.7	0.012507120	0.13204	0.11690	-0.07468	-0.33585
15	31381.4	318.7	0.00000369	0.00000	-0.00167	-0.00104	0.00005
16	31785.2	314.6	0.000679813	0.00704	0.05844	0.05992	-0.00592
17	31809.8	314.4	0.000128117	0.00133	0.02559	0.02578	-0.00250
18	32346.0	309.2	0.003087328	0.03142	0.10828	-0.13416	-0.04123
19	33211.3	301.1	0.001808050	0.01792	0.00723	-0.06488	-0.11688
20	33255.9	300.7	0.000014381	0.00014	-0.00116	-0.00355	-0.01133
21	33441.4	299.0	0.000508600	0.00501	-0.05245	0.01861	-0.04370
22	33454.1	298.9	0.001567712	0.01543	-0.09641	0.03243	-0.07128
23	34272.9	291.8	0.052380842	0.50315	-0.18167	-0.68520	0.02541
24	34696.9	288.2	0.003038214	0.02883	-0.06799	-0.14210	0.06334
25	34707.9	288.1	0.000480670	0.00456	-0.02626	-0.05711	0.02465
26	35169.2	284.3	0.005575422	0.05219	0.10489	-0.18933	0.07310
27	35445.8	282.1	0.000000927	0.00001	0.00214	0.00187	0.00074
28	35487.4	281.8	0.009219944	0.08553	-0.27580	-0.08581	-0.04587
29	35541.3	281.4	0.000001611	0.00001	0.00370	-0.00076	0.00080
30	35952.4	278.1	0.000020794	0.00019	-0.01343	0.00052	-0.00313
31	36009.9	277.7	0.003659797	0.03346	-0.17270	0.04972	-0.03407
32	36257.8	275.8	0.000000808	0.00001	0.00174	0.00198	-0.00061
33	36307 4	275 4	0 000000744	0 00001	0 00027	0 00258	-0 00015
34	36418.3	274.6	0.001002892	0.00907	0.04705	0.08220	0.00976
35	37220.0	268.7	0.000000017	0.00000	0.00003	0.00036	-0.00013
36	37395.8	267.4	0.000051412	0.00045	0.01808	-0.00567	-0.00967
37	37575.9	266.1	0.025496397	0.22338	-0.39720	0.16175	0.19862
38	37734 5	265 0	0 039790957	0 34715	0 16933	0 56434	0 00160
39	38821 4	257.6	0 004206590	0 03567	0 04284	0 18390	0 00443
40	38835 2	257.5	0.006768823	0.05738	0.01201	0.23437	0 00657
41	39040 4	256 1	0 000022749	0 00019	0.01900	0.01303	0 00030
42	39216 2	255 0	0 000015300	0.00013	0 00043	0.01126	0 00125
43	39781 8	251.4	0.034630146	0.28658	0.42610	-0 21234	-0 24480
40	39897 9	250 6	0.261033452	2 15388	-0 27533	-1 44119	-0 03230
15	10260 9	248 4	0.201033432	0 00019	0.27555	0 01245	-0.00207
46	40465 2	240.4	0 000112619	0 00019	0.00165	-0 029//	-0 00686
- U 27	40510 5	27/.1	0.000112010	0.00092	0.00100	-0 10964	-0 05/76
- 1 / 2 Q	40510.5	240.0	0.002259425	0.0100	-0 00454	0.10904	0.00470
10	10571 0	240.7	0.000109009	0.00150	-0 0/252	0.03370	_0 035/4
49	403/4.9	240.0	0.0010/4093	0.01321	-0.04233	-0 07400	-0.03544
50	40000./	240.U	0.000/004/0	0.00039	-0.02910	-0.0/400	0.00/6/

X-Ray diffraction: All crystals were rapidly transferred into inert perfluoroether oil mounted on top of a glass fiber (1) human hair (2, 4) and transferred to the cold nitrogen gas stream of the diffractometer.^{2a} Data set of **1** was collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT;^{2b} data reduction Denzo-SMN;^{2c} absorption correction, Denzo;^{2d} structure solution SHELXS-97;^{2e} structure refinement SHELXL-97 and graphics, XP.^{2f,g} The data sets for **2** and **4** were collected on an Oxford Diffraction Xcalibur E instrument using monochromated MoK α radiation. The data were integrated and an empirical absorption correction was performed employing the CrysAlisPro software.^{2h} The structures were solved employing SHELXS-97 and refined anisotropically for all non-hydrogen atoms by full-matrix least squares on all F² using SHELXL-97.^{2e,f} During refinement and analysis of the crystallographic data the programs WinGX, PLATON, Ortep-3 and POV-Ray were used.^{2i,j,k,l}

X-ray crystal structure analysis of 1 (CCDC No. 1006445): Compound 1 crystallized with two independent molecules per asymmetric unit. formula C₂₀H₂₄CuIN₂, M = 482.85, yellow crystal, 0.23 x 0.13 x 0.05 mm, a = 20.4147(4), b = 9.7229(2), c = 19.5841(3) Å, V = 3887.25(13) Å³, $\rho_{calc} = 1.650$ gcm⁻³, $\mu = 2.715$ mm⁻¹, empirical absorption correction (0.574 $\leq T \leq 0.876$), Z = 8, orthorhombic, space group $Pca2_1$ (No. 29), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 16417 reflections collected ($\pm h$, $\pm k$, $\pm l$), 6417 independent ($R_{int} = 0.050$) and 5971 observed reflections [$I > 2\sigma(I)$], 446 refined parameters, max./min. residual electron density 2.20/-0.54 e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

X-ray crystal structure analysis of 2 (CCDC No. 1006215): Compound **2** crystallized with one independent molecule per asymmetric unit. formula $C_{20}H_{24}BrCuN_2$, M = 435.86, dark orange crystal, 0.36 x 0.44 x 0.48 mm, a = 9.6421(3), b = 19.6933(5), c = 19.7231(5) Å, V = 3745.12(18) Å³, $\rho_{calc} = 1.546$ gcm⁻³, $\mu = 3.303$ mm⁻¹, multi-scan absorption correction (0.771 $\leq T \leq 1.000$), Z = 8, orthorhombic, space group *Pbca* (No. 61), $\lambda = 0.71073$ Å, T = 100(2) K, ω scans, 143456 reflections collected (-13 $\leq h \leq 13$, -27 $\leq k \leq 27$, -27 $\leq l \leq 27$), 5456 independent ($R_{int} = 0.0703$) and 4443 observed reflections [$I > 2\sigma(I)$], 223 refined parameters, max. (min.) residual electron density 0.533/-0.490 e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

X-ray crystal structure analysis of 4 (CCDC No. 1006216): Compound 4 crystallized with one independent molecule per asymmetric unit. formula $C_{22}H_{24}Cu_2N_2$, M = 471.53, dark orange crystal, 0.44 x 0.42 x 0.33 mm, a = 8.5167(3), b = 12.2692(3), c = 20.6552(5) Å, $\beta = 94.754(3)^{\circ}$, V = 2150.90(11) Å³, $\rho_{calc} = 1.456$ gcm⁻³, $\mu = 1.991$ mm⁻¹, multi-scan absorption correction (0.854 \leq T \leq 1.000), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 0.71073$ Å, T = 100(2) K, ω scans, 42497 reflections collected (-11 \leq h \leq 11, -17 \leq k \leq 16, -28 \leq 1 \leq 28), 5951 independent ($R_{int} = 0.0502$) and 4858 observed reflections [$I > 2\sigma(I)$], 277 refined parameters (24 restraints), max./min. residual electron density 0.406/– 0.293 e.Å⁻³, hydrogen atoms calculated and refined as riding atoms. Two sites are occupied by disordered

CN moieties and were refined employing a split atom model; a ISOR restraints were applied to the disordered atom pairs.

X-ray powder diffractometric: investigations were done using a Bruker D8 Discover (DA VINCI® design) powder diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with a copper tube operated at 40 kV and 40 mA (unsplit K α_1 +K α_2 doublet, mean wavelength $\lambda = 154.19$ pm). A focusing Goebel mirror and a 0.6 mm fixed divergence slit were mounted in the primary beam path, the receiving slit in the secondary beam path was used with 7.5 mm opening. 2.5° axial Soller slits were used in both beam paths. Detection was done with a LynxEye® (Bruker AXS) 1D-detector using the full detector range of 192 channels.

Measurements were done in 'Coupled Two Theta/Theta' mode, with a 2 θ range of 5 – 60°, a step width of 0.025° and 0.25 seconds measurement time per step.

Data collection and processing was done with the software packages DIFFRAC.Suite (V2 2.2.690, Bruker AXS 2009-2011) and DIFFRAC.EVA (Version 3.0, Bruker AXS 2010-2013).

[1] Pallenberg, A. J.; Koenig, K. S.; Barnhart, D. M., Inorg. Chem. 1995, 34, 2833-2840.

[2] (a) Stalke, D. *Chem. Soc. Rev.* 1998, 27, 171-178. (b) Nonius B.V., 1998. (c) Otwinowski, Z.; Minor, W. *Methods Enzymol.* 1997, 276, 307-326. (d) Otwinowski, Z.; Borek, D.; Majewski, W.; Minor, W. *Acta Crystallogr.* 2003, *A59*, 228-234. (e) Sheldrick, G. M. *Acta Crystallogr.* 1990, *A46*, 467-473. (f) Sheldrick, G. M. *Acta Crystallogr.* 2008, *A64*, 112-122. (g) BrukerAXS, 2000. (h) CrysAlisPro, Agilent Technologies, Version 1.171.34.44 – 1.171.36.24, 2010–2012. (i) Farrugia, L. J. *J. Appl. Crystallogr.* 1999, *32*, 837–838. (j) Spek, A. L. PLATON - A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 1998. (k) Farrugia, L. J. *J. Appl. Cryst* (2012), 45, 849-854. (l) Persistence of Vision Pty. Ltd. (2004), Persistence of Vision Raytracer (Version 3.6), Retrieved from http://www.povray.org/download/