Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic supplementary information

Four linear Cu^{II}₃ subunit-based coordination polymers with various inter-subunit connections,

spin ground-states and intra-/inter-subunit magnetic couplings

En-Cui Yang,^{a, *} Zhong-Yi Liu,^a Si-Hang Chen,^a Yan-Hong Su,^a Yan-Yan Zhang,^a Xiao-Jun Zhao^{a, b, *}

Table S1 Selected bond distances (Å) and angles (°) for 1 ^a

Cu1–O5	1.928(3)	Cu2–O6	1.880(3)	
Cu1–O6	1.911(4)	Cu2–N2	1.986(4)	
Cu1–O2	1.969(3)	Cu3–O5	1.892(3)	
Cu1–N1	2.009(4)	Cu3–O1	1.973(3)	
Cu1–O7W	2.341(5)			
O5–Cu1–O6	91.53(15)	O5–Cu1–O7W	95.93(19)	
06–Cu1–O1	94.99(13)	O2–Cu1–O7W	85.31(17)	
O5–Cu1–O2	95.35(14)	N1-Cu1-O7	99.8(2)	
O2–Cu1–N1	86.80(15)	O6-Cu2-N2	85.59(16)	
O6–Cu1–O7W	101.24(19)	O5–Cu2–N2A	94.41(16)	
06–Cu1–N1	84.80(15)	O5-Cu3-O1	89.69(14)	
^{<i>a</i>} Symmetry codes: $A - x$, $1 - y$, $2 - z$.				

Table S2 Selected bond distances (Å) and angles (°) for 2 a

Cu1–O8	1.901(3)	Cu2–N2	1.967(3)		
Cu1–N1	2.012(3)	Cu2–O3B	2.000(3)		
Cu2–O8	1.910(3)	Cu2–O3	2.361(3)		
Cu2–O7	1.931(3)				
O8A-Cu1-N1A	85.78(12)	O7–Cu2–O3B	87.39(12)		
O8-Cu2-N2	86.30(13)	N2-Cu2-O3B	93.73(12)		
O8–Cu1–N1	85.78(12)	O8–Cu2–O3	104.87(12)		
O3B-Cu2-O3	76.75(11)	O7–Cu2–O3	96.68(13)		
O8–Cu2–O7	92.16(12)	N2-Cu2-O3	98.41(13)		
^{<i>a</i>} Symmetry codes: $A - x$, $1 - y$, $1 - z$; $B - x$, $2 - y$, $1 - z$.					

Table S3 Selected bond distances (Å) and angles (°) for 3 a

Cu1–O1	1.871(4)	Cu1–N2	1.988(7)
Cu1–N6	1.990(7)	Cu1–N9	2.006(7)
Cu1–O6	2.553(7)	Cu1–N12	2.557(7)
Cu2-N12	2.362(8)	Cu2–N5	2.032(8)
Cu2–N1	1.994(7)		
O1–Cu1–N9	85.5(3)	N2–Cu1–N6	89.5(3)
N6–Cu1–N9	94.4(3)	O1–Cu1–N2	90.6(3)
N1–Cu2–N5A	91.1(3)	O1–Cu1–N2	90.6(3)
N1–Cu2–N5	88.9(3)	N1-Cu2-N12	88.4(3)
N5–Cu2–N12A	91.2(3)	N5-Cu2-N12	88.8(3)
N1A-Cu2-N12	91.6(3)	N1-Cu2-N12	88.4(3)
^a Symmetry code	es: $A - x, -2$	<i>y</i> , 1 − <i>z</i> .	

Cu1–O9	1.903(3)	Cu108	1.920(3)		
Cu1–N5	1.978(4)	Cu1–O2	1.988(3)		
Cu1–O8B	2.492(5)	Cu2–O5C	2.597(8)		
Cu2–O8	1.902(3)	Cu2O10	1.910(3)		
Cu2–O1	1.967(3)	Cu2–N1	2.007(4)		
Cu3–O9	1.899(3)	Cu3–O10A	1.916(4)		
Cu3–N6	2.009(4)	Cu3–N2A	2.021(4)		
Cu3–O11	2.381(5)	N5-Cu1-O2	86.56(15)		
O9–Cu1–O8	95.47(14)	09–Cu1–N5	86.61(16)		
O8–Cu1–O2	91.27(14)	01-Cu2-N1	87.56(15)		
O8–Cu2–O10	94.06(14)	O8-Cu2-O1	91.29(14)		
O10-Cu2-N1	86.01(16)	N2A-Cu3-O11	99.76(18)		
O10A-Cu3-N6	94.41(16)	09–Cu3–N2A	94.33(16)		
O10A-Cu3-N2A	85.38(16)	O9-Cu3-N6	85.65(16)		
O9-Cu3-O11	93.83(17)	O10A-Cu3-O11	87.62(17)		
N6-Cu3-O11	89.34(18)				
^{<i>a</i>} Symmetry codes: A $1/2 - x$, $y + 1/2$, $1/2 - z$; B $0.5 - x$, $0.5 - y$, 1					
-z; C 1 $-x$, y, 1.5 $-z$.					

Table S4 Selected bond distances (Å) and angles (°) for 4^{a}

Table S5	Hydrogen	-bonding pa	arameters ((Å, °)) for 1–3

D–H…A	<i>d</i> (D–H)	d (H···A)	<i>d</i> (D…A)	∠DHA
1				
N4–H4A…O4 ^A	0.90	2.056	2.935	165.17
N4–H4B…O3 ^B	0.90	2.140	3.040	179.17
O7–H7A…N4 ^B	0.851	2.210	3.003	155.04
2				
N(4)–H4"····O7 ^A	0.90	2.52	3.2119	134
N(4)–H4"…O ^B	0.90	2.31	3.0856	144
O7–H7B…O1 ^C	0.84	2.43	3.0597	133
O7–H7B…O2 ^C	0.84	1.84	2.6514	162
O8–H8'…O1 ^C	0.84	2.15	2.9778	169
3				
N8–H8B…N4 ^A	0.900	2.390	135.00	3.092

Symmetry codes for 1: ^A 1 - x, 1 - y, 1 - z; ^B - x, 1 - y, 1 - z. For 2: ^A 1 + x, y, z; ^B 1 - x, 2 - y, 1 - z; ^C x - 1, y, z.

For **3**: ^A 1/2 - x, -y, z + 1/2.

Fig. S1 3D supramolecular network of 1 by non-covalent N–H…O interactions.

Fig. S2 2D layer of 2 by inter-chain O–H…O and N–H…O hydrogen-bonding interactions.

Fig. S3 3D supramolecular network of 3 generated by N–H…N hydrogen-bonding interactions.

Fig. S4 Simulated (violet) and experimental (blue) X-ray powder diffraction patterns for 1.

Fig. S5 Simulated (violet) and experimental (blue) X-ray powder diffraction patterns for 2.

Fig. S6 Simulated (purple) and experimental (blue) X-ray powder diffraction patterns for 3.

Fig. S7 Simulated (purple) and experimental (blue) X-ray powder diffraction patterns for 4.

Fig. $\mathbf{S8}$ TG curves for complexes $\mathbf{1}$, $\mathbf{2}$ and $\mathbf{4}$.

Fig. S9 Schematic diagram representing the exchange interactions in 1.

Fig. S10 The dM/dH plot for **4**.