Supporting Information for

A Panchromatic Hybrid Crystal of Iodoplumbate Nanowires and *J*-aggregated Naphthalene Diimides with Long-lived Charge-separated States

Jian-Jun Liu,^a Ying-Fang Guan,^a Chen Jiao, ^a Mei-Jin Lin,^{*ab} Chang-Cang Huang^{*a} and Wen-Xin Dai^a

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China, 350116; and ^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, China, 350002.

Email: meijin_lin@fzu.edu.cn, cchuang@fzu.edu.cn, Tel: 0086 591 2286 6143

Table of Contents:

1.	Experimental details and synthesis	S2
2.	Single Crystal X-ray Diffraction Analyses	S3
3.	UV/Vis diffuse reflectance spectra	S 6
4.	X-ray Powder Diffraction	S 8
5.	Thermogravimetric analyses	S 8
6.	References	S9

1. Experimental Details and Synthesis

Materials and Methods: *N*-methylpyrrolidin-2-one (NMP, analytical reagent grade), PbI₂, hydroiodic acid (55%, w/w), ethanol (analytical reagent grade) were obtained from commercial suppliers. All chemicals and reagents were used as received unless otherwise stated. NMR spectra were recorded with a Bruker Avance III 500 MHz NMR spectrometer. ESI mass spectra were recorded on a LCQ Fleet from Thermo Fisher Scientific. IR spectra were recorded in the range 4000-400 cm⁻¹ on a Perkin-Elmer FT-IR spectrum 2000 spectrometer with pressed KBr pellets. The electron spin resonance (ESR) measurements were recorded on a Bruker A300 instrument operating in the X-band at room temperature. Powder X-ray diffraction (PXRD) patterns were recorded with a Rigaku MiniFlex-II X-Ray diffractometer with Cu K α radiation ($\lambda = 1.54178$ Å). TGA measurements were performed on a TG-209 system with a heating rate of 10 °C/min under an N₂-atmosphere. UV-Vis diffuse reflectance spectra were recorded at room temperature on a Varian Cary 500 UV-Vis spectrophotometer equipped with an integrating sphere.

Synthesis of DPNDI: The organic ligand N,N° -di(4-pyridyl)-1,4,5,8-naphthalene diimide (DPNDI) was synthesized following the reported process.^[S1] ¹H NMR (500 MHz, CF₃COOD, 298K): $\delta = 9.12$ (d, J = 7 Hz, 4H), 9.05 (s, 4H), 8.38 (d, J = 7 Hz, 4H). ESI-MS *m/z*: Calculated for C₂₄H₁₂N₄O₄: 420.09, Found: 420.09.

Synthesis of $(H_2DPNDI) \cdot (2I)$: A solution (5 mL) of EtOH was carefully layered on a NMP (5 mL) solution of DPNDI (0.10 mmol, 0.042g), and 0.5 mL HI (55%, w/w). Red block crystals of complex $(H_2DPNDI) \cdot (2I)$ were obtained after several days (*ca*. 65% yield based on DPNDI).

Synthesis of $(Et_2DPNDI) \cdot (2I)$: Iodoethane (3.12 g, 20 mmol) was added to a 1:1 mixture of MeCN/DMF (30 mL) in a round-bottomed three-necked flask, and then the DPNDI (2.10 g, 5 mmol) was added in the solution. After heating under reflux for 8 h, the reaction mixture was cooled to room temperature, and the precipitate was collected by filtration and washed with CH₂Cl₂. (*ca.* 86% yield based on DPNDI). The solid was dissolved in MeCN/H₂O (1/2, v/v), the filtrate was allowed to stand at room temperature, red block crystals of (Et₂DPNDI) · (2I) were obtained within two days.

Synthesis of complex 1. A solution (5 mL) of EtOH was carefully layered on a NMP (5 mL) solution of DPNDI (0.03 mmol, 0.013g), PbI₂, (0.09 mmol, 0.042 g) and 0.2 mL HI (55%, w/w). Black block crystals of complex 1 were obtained after several days (*ca.* 21% yield based on DPNDI). IR data (KBr, cm⁻¹): 3425(m), 3047(w), 2968(w), 2897(m), 1697(m), 1635(s), 1537(m), 1363(s), 1287(m), 1209(m), 1124(w), 1086(w), 982(w), 885(w), 756(m), 662(m), 536(w).

2. Single Crystal X-ray Diffraction Analysis

2.1. Methods and crystal data

Suitable single crystal of complex 1, $(H_2DPNDI) \cdot (2I)$ and $(Et_2DPNDI) \cdot (2I)$ were mounted on glass fiber for the X-ray measurement. Diffraction data were collected on a Rigaku-AFC7 equipped with a Rigaku Saturn CCD area-detector system. The measurement was made by using graphic monochromatic Mo K α radiation (λ = 0.71073 Å) at 293 K under a cold nitrogen stream. The frame data were integrated and absorption correction using a Rigaku CrystalClear program package. All calculations were performed with the SHELXTL-97 program package [S2], and structures were solved by direct methods and refined by full-matrix least-squares against F². All non-hydrogen atoms were refined anisotropically, and hydrogen atoms of the organic ligands were generated theoretically onto the specific atoms except for the water molecules. The H atoms of water were located in difference Fourier maps and their positions were refined with O-H bond-length restraints of 0.84 Å. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication number CCDC 1024096, 1038297 and 1038298 for complex 1, $(H_2DPNDI) \cdot (2I)$ and $(Et_2DPNDI) \cdot (2I)$, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Complex	1	(H ₂ DPNDI)·(2I)	(Et ₂ DPNDI)·(2I)
Crystal size (mm)	0 34×0 27×0 14	0 40×0 18×0 15	0 34×0 22×0 15
Empirical Formula	$C_{58}H_{50}I_{12}N_{10}O_{12}Pb_4$	$C_{24}H_{16}I_2N_4O_5$	$C_{20}H_{22}I_2N_4O_4$
Formula weight	3430.64	694 21	732 30
Crystal system	Triclinic	Monoclinic	Monoclinic
Snace groun	P_1	$C^{2/c}$	P2/c
space group	1 - 1 11 361(2)	15 786(3)	12/0
$u(\mathbf{A})$	11.301(2) 12.250(2)	15.780(5) 9.5020(17)	12.000(2) 7 4721(15)
$\mathcal{D}(\mathbf{A})$	15.230(5)	8.3029(17)	1.4/21(13)
с (А)	15.5/2(3)	1/.61/(4)	16.822(6)
α (°)	66.81(3)	90.00	90.00
β (°)	78.10(3)	102.38(3)	117.21(2)
γ (°)	74.92(3)	90.00	90.00
$V(Å^3)$	2066.4(7)	2309.6(8)	1342.1(6)
Ζ	1	4	2
<i>Dc</i> (g/ cm ³)	2.757	1.996	1.812
μ(Mo Ka) (mm ⁻¹)	12.662	2.769	2.385
<i>F</i> (000)	1528	1336	712
Collected reflections	19971	9225	12197
Independent reflections	9307 (0. 0378)	2651	3064
Goodness-of-fit on F ²	1.038	1.179	1.074
$R_1^a, wR_2^b (I > 2\sigma(I))$	0.0404, 0.0933	0.0305, 0.0749	0.0535, 0.1329
$R_{1^{a}}, wR_{2^{b}}$ (all data)	0.0599, 0.1059	0.0319, 0.0757	0.0606, 0.1386

Table S1. Crystal Data and Structure Refinements for 1, $(H_2DPNDI) \cdot (2I)$ and

 $(Et_2DPNDI) \cdot (2I).$

 Table S2. Hydrogen Bonds for complex 1.

D-H/A	D-H (Å)	HA (Å)	DA (Å)	<d-h a<br="">(deg)</d-h>	symmetry
O6-H32BO4	0.841(10)	2.14(7)	2.852(9)	143(9)	-x+2, -y+1, -z+1
N1-H1O5	0.86	1.93	2.729(12)	153.7	-x+1, -y+3, -z
N3-H3AO6	0.86	1.83	2.673(10)	167.8	_

2.2. Crystal structure

Figure S1. Portions of the X-ray structures of the hybrid crystal **1** composed of iodoplumbate nanowires and protonated naphthalene diimides.

Figure S2. The X-ray structures of the $(H_2DPNDI) \cdot (2I)$.

Figure S3. The X-ray structures of the $(Et_2DPNDI) \cdot (2I)$

3. UV/Vis diffuse reflectance spectra

Figure S4. UV/Vis diffuse reflectance spectrum of DPNDI at room temperature.

Figure S5. UV/Vis diffuse reflectance spectrum of (Bu₄N)[PbI₃] at room

temperature.^[S3]

Figure S6. UV/Vis diffuse reflectance spectrum of $(H_2DPNDI) \cdot (2I)$ at room

temperature.

Figure S7. UV/Vis diffuse reflectance spectrum of (Et_2DPNDI) ·(2I) at room temperature.

4. X-ray Powder Diffraction

Figure S8. Comparison of the simulated and synthesized PXRD for complex 1.

5. Thermogravimetric analyses

Figure S9. TGA data of 1

6. References

- S1. Guha, S.; Goodson, F. S.; Corson, L. J.; Saha. S. J. Am. Chem. Soc., 2012, 134, 13679.
- S2. Sheldrick. G. Acta Cryst. 2008, A64, 112-122.
- S3. Krautscheid, H. and Vielsack, F. Angew. Chem. Int. Ed., 1995, 34, 2035-2037.