Supporting Information (S1) for

Structural and Photoluminescence Properties of Stannate based Displaced Pyrochlore-type Red Phosphors: Ca_{3-x}Sn₃Nb₂O₁₄: xEu³⁺

T. S. Sreena, P. Prabhakar Rao*, T. Linda Francis, Athira K. V. Raj and Parvathi S. Babu

Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum – 695 019, India

ES1. Calculation of Quantum Efficiency of Red Phosphors

Assuming that only radiative and non radiative processes are essentially involved in the depopulation of ${}^{5}D_{0}$ states of Eu³⁺ ion, the quantum efficiency (η) can be expressed as;

$$\eta = A_{rad} / (A_{rad} + A_{nrad}) \tag{1}$$

where A_{rad} and A_{nrad} are the radiative and non-radiative transition probabilities respectively. The emission intensity (I) can be calculated as the integral intensity S of ${}^{5}D_{0}{}^{-7}F_{0-4}$ emission curves as;

$$I_{i-j} = \hbar \omega_{i-j} A_{i-j} N_i \sim S_{i-j}$$

$$\tag{2}$$

where i and j are the initial level (${}^{5}D_{0}$) and the final levels (${}^{7}F_{0-4}$), respectively; $\hbar\omega_{i-j}$ is the transition energy, A_{i-j} is the Einstein's coefficient of spontaneous emission, and N_{i} is the population of the ${}^{5}D_{0}$ emitting level.

The experimental coefficients of spontaneous emission were then calculated according to the equation;

$$A_{0j} = A_{01} \left(I_{0j} / I_{01} \right) \left(v_{01} / v_{0j} \right)$$
(3)

where v_{01} and v_{0j} are the energy baricenters of the ${}^5D_0 {}^7F_1$ and ${}^5D_0 {}^7F_j$ energy levels determined from the emission peak of Eu³⁺ ion. A₀₁ is the Einstein's coefficient of spontaneous emission between 5D_0 and 7F_1 energy levels.

In vacuum, the average refractive index (n) is 1.506 and $(A_{0-1})_{vac} = 14.64s^{-1}$ is considered. Then the value of A_{0-1} was expressed as,

$$A_{0-1} = n^3 (A_{0-1})_{vac} \sim 50 s^{-1}$$
(4)

The life time (τ) of the ⁵D₀ states, A_{rad} and A_{nrad} are related as;

$$A_{tot} = 1/\tau = A_{rad} + A_{nrad}$$
(5)

ES1. Calculation of Spectral Parameters

The Judd-Ofelt intensity parameters and the spectral parameters of the Ca_{3-x}Sn₃Nb₂O₁₄: xEu^{3+} (x= 0.05, 0.10, 0.15, and 0.20) phosphors tabulated in Table 4 of the manuscript is calculated from the emission spectrum for Eu³⁺ ion based on the ⁵D₀ \rightarrow ⁷F₂ and ⁵D₀ \rightarrow ⁷F₄ transitions and ⁵D₀ \rightarrow ⁷F₁ magnetic dipole allowed transitions as the reference. The integrated emission intensities associated with the radiative emission rates can be written as:

$$\frac{A_{0-2,4}}{A_{0-2,4}} = \frac{I_{0-2,4}h\nu_{0-2,4}}{I_{0-2,4}h\nu_{0-2,4}}$$
(6)

where I_{0-J} is the integrated emission intensity and hv_{0-J} is the energy corresponding to transition⁵ $D_0 \rightarrow {}^7F_J$ (J = 1, 2, 4). The transition ${}^5D_0 \rightarrow {}^7F_J$ is left out due to their small emission intensities. The magnetic dipole radiative emission rate A_{0-1} has a value of $\approx 50 \text{ s}^{-1}$. The radiative

emission rates $A_{0-2, 4}$ are related to forced electric dipole transitions and they may be written as a function of the J–O intensity parameters:

$$A_{0-J} = \frac{64\pi^4 (\nu_{0-2,4})^3 e^2}{3hc^3} \frac{1}{4\pi\epsilon_0} \chi \sum_{j=2,4,6} \Omega_j < \langle 5D_0 \left| U^{(J)} \right| 7F_{2,4} > \rangle^2$$
(7)

where, χ is the Lorentz local field correction factor given as function of the index of refraction n of the host $\chi = n(n2+2)^{2/9}$. The non-zero square reduced matrix elements are solely $\langle \langle 5D_0 | U^{(2)} | 7F_2 \rangle \rangle^2_{=0.0032}$ and $\langle \langle 5D_0 | U^{(4)} | 7F_4 \rangle \rangle^2_{=0.0023}$. Thus, using Eqs (6) and (7) the values of $\Omega_{2,4}$ were obtained.¹ The value of Ω_6 could also be estimated by analyzing the⁵D₀ \rightarrow ⁷F₆transition but in the present case, this emission could not be observed. The calculated Judd–Ofelt parameters have been used to predict some important radiative properties such as transition probabilities, radiative lifetime and branching ratios and lifetimes for the excited states of Eu³⁺ions.The radiative transition probability for a transition $\Psi J \rightarrow \Psi' J'$ can be calculated from Eq. (3) as $A_{rad}(\Psi J, \Psi' J') = A_{J-J'}$.

The total radiative transition probability (A_T) can be calculated using the equation below:

$$A_T(\Psi J) = \Sigma_{J'} A_{J-J'} \tag{8}$$

The radiative lifetime $\tau_{rad}(\Psi J)$ of an excited state in terms of A_T , is given by:

$$\tau_{\rm rad}(\Psi J) = \frac{1}{A_T(\Psi J)}$$
(9)

The branching ratio $\beta(\Psi J)$ corresponding to the emission from an excited level to its lower levels is given by:

$$\beta(\Psi J) = \frac{1}{A_T(\Psi J)}$$
(10)

The stimulated emission cross-section $(\sigma(\lambda_p))$ can be expressed as:

$$\sigma(\lambda_{p})(J \to J') = \frac{\lambda_{p}^{4}}{8\pi cn^{2} \Delta \lambda_{eff}} A_{rad}(J \to J')$$
(11)

where λ_p is the peak wavelength and $\Delta \lambda_{eff}$ is its effective line width found by dividing the area of the emission band by its maximum height.

Figure Captions

Fig. S1. Scanning electron micrographs of $Ca_{3-x}Sn_3Nb_2O_{14}$: xEu^{3+} : (a) x=0.05, (b) x=0.10, (c) x=0.15 and (d) x=0.20. The particles appear to be highly crystalline and are slightly agglomerated. The particles are in the scale of 1-5µm in size with homogeneous nature.

Fig. S2. EDS spectra of $Ca_{3-x}Sn_3Nb_2O_{14}$: xEu^{3+} : (a) x= 0.05, (b) x= 0.10, (c) x= 0.15 and (d) x=0.20. EDS quantification with Eu^{3+} concentration confirms the increase of oxygen content in the lattice.

Fig. S1

Fig. S1. Scanning electron micrographs of $Ca_{3-x}Sn_3Nb_2O_{14}$: xEu^{3+} : (a) x=0.05, (b) x=0.10, (c) x=0.15 and (d) x=0.20. The particles appear to be highly crystalline and are slightly agglomerated. The particles are in the scale of 1-5µm in size with homogeneous nature

Fig. S2.

(a)

Fig. S2 EDS spectra of $Ca_{3-x}Sn_3Nb_2O_{14}:xEu^{3+}$: (a) x= 0.05, (b) x= 0.10, (c) x= 0.15 and (d) x=0.20. EDS quantification with Eu^{3+} concentration confirms the increase of oxygen content in the lattice.