Supporting Information for

Solvatochromic and Application in Dye-Sensitized Solar Cells of Sandwich-like Structure Cd(II) Complexes: Supramolecular Architectures Based on Schiff Base Ligand N¹, N³-bis((6-methoxypyridin-2-yl) methylene) benzene-1,3-diamine

Xin-Ming Wang,^{*a*} Ping Wang, ^{*a*} Rui-Qing Fan,* ^{*a*} Meng-Ying Xu,^{*a*} Liang-Sheng Qiang, ^{*a*} Li-Guo Wei,^{*a*} Yu-Lin Yang,* ^{*a*} Yu-Lei Wang ^{*b*}

^{*a*}Department of Chemistry, Harbin Institute of Technology, Harbin 150001, P. R. China. E-mail: fanruiqing@hit.edu.cn, <u>ylyang@hit.edu.cn</u>; Fax: +86-451-86418270 ^{*b*}National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, P. R. of China

Figure S1. IR spectra of Schiff base ligand L, complex 1 and 2

Figure S2. ¹H NMR spectrum of L

Figure S3. ¹H NMR spectrum of 1

Figure S6. The ESI-MS spectrum of 1

Identification code		L	1	2
Empirical formula		$C_{20}H_{18}N_4O_2$	$C_{40}H_{40}Cd_2N_{12}O_{18}$	$C_{52}H_{58}Cd_2N_{14}O_{22}$
Formula weight		346.38	1201.66	1597.72
Crystal system		Monoclinic	Triclinic	Monoclinic
Space group		$P2_{1}/c$	Р	$P2_1/c$
	<i>a</i> (Å)	17.335(4)	8.8510(18)	12.217(2)
	b(Å)	13.207(3)	11.372(2)	20.167(4)
Unit call dimensions	$c(\text{\AA})$	7.7439(15)	12.324(3)	14.706(3)
Unit cell dimensions	<i>α</i> (°)	90	90.55(3)	90
	$\beta(^{\circ})$	94.11(3)	100.25(3)	111.96(3)
	γ(°)	90	108.59(3)	90
Volume(Å ³)		1768.3(6)	1768.3(6) 1154.0(4)	
Ζ		4	4 1	
Calculated density(mg/m ³)		1.301	1.729	1.579
Absorption coefficient(mm ⁻¹)		0.087	1.011	0.875
Theta range for data collect	ction	3.06 to 27.48	3.25 to 27.48	3.03 to 27.48
		-22<=h<=22	-11<=h<=11	-15<=h<=15 -
Limiting indices		-17<=k<=17	-14<=k<=14	26<=k<=26
		- 9<=1<=10	-16<=l<=15	-16<=1<=19
Data / restraints / paramete	ers	4029 / 0 / 235	5242 / 0 / 325	7653 / 0 / 427
Goodness-of-fit on F^2		0.902	1.086	1.067
Einal D indiana [15 2aiama	R_1	0.0534	0.0884	0.0394
Final R indices [1>2sigma	wR_2	0.1359	0.2108	0.1269
$D_{1} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2$	R_1	0.1109	0.1002	0.0453
K indices (all data)	wR_2	0.1702	0.2210	0.1311
Largest diff. peak and hole($e \cdot Å^{-3}$)		0.180 and -0.179	6.412 and -6.047	1.753 and -0.906

Table S1 Crystal data and structure parameters for ligand L and complexe 1-2

 $\overline{{}^{a} R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; wR_{2} = [\sum [w (F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w (F_{o}^{2})^{2}]]^{1/2}}.$

Table S2 Selected bond lengths [Å] and angles [°] for L.

	-				
C(1)-O(1)	1.432(3)	C(8)-N(2)	1.424(3)	C(19)-N(4)	1.322(3)
C(2)-N(1)	1.320(3)	C(12)-N(3)	1.421(3)	C(19)-O(2)	1.355(3)
C(2)-O(1) C(6)	-1.360(3)	C(14)-N(3)	1.273(3)	C(20)-O(2)	1.435(3)
N(1)	1.358(3)	C(15)-N(4)	1.358(3)	C(7)-N(2)	1.272(3)
O(1)-C(1)-H(1A)	109.5	C(13)-C(8)-N(2)	116.7(2)	O(2)-C(20)-H(20B)	109.5
O(1)-C(1)-H(1B)	109.5	C(11)-C(12)-N(3)	117.65(19)	O(2)-C(20)-H(20C)	109.5
O(1)-C(1)-H(1C)	109.5	C(13)-C(12)-N(3)	122.5(2)	C(2)-O(1)-C(1)	117.2(2)
N(1)-C(2)-O(1)	119.3(2)	N(3)-C(14)-C(15)	122.5(2)	C(19)-O(2)-C(20)	117.34(18)
N(1)-C(2)-C(3)	124.5(2)	N(3)-C(14)-H(14A)	118.8	C(2)-N(1)-C(6)	116.9(2)
O(1)-C(2)-C(3)	116.1(2)	N(4)-C(15)-C(16)	123.07(19)	C(7)-N(2)-C(8)	118.5(2)
N(1)-C(6)-C(5)	123.0(2)	N(4)-C(15)-C(14)	114.34(19)	C(14)-N(3)-C(12)	118.89(18)

N(1)-C(6)-C(7)	113.7(2)	N(4)-C(19)-O(2)	135.63(9)	C(19)-N(4)-C(15)	116.9(2)
N(2)-C(7)-C(6)N	123.3(2)	N(4)-C(19)-C(18)	124.0(2)	O(2)-C(20)-H(20A)	109.5
N(2)-C(7)-H(7A)	118.3	O(2)-C(19)-C(18)	116.5(2)	C(9)-C(8)-N(2)	123.7(2)

Table S3 Selected bond lengths [Å] and angles $[\circ]$ for 1.

Cd(1)-O(4)	2.276(6) N(3)-Cd(1)#1	2.370(6)	Cd(1)-O(3)	2.379(6)
Cd(1)-N(3)#1	2.370(6) N(4)-Cd(1)#1	2.401(7)	Cd(1)-N(1)	2.453(6)
Cd(1)-N(2)	2.372(7) Cd(1)-N(4)#1	2.401(7)	Cd(1)-O(6)	2.685(8)
O(4)-Cd(1)-N(3)#1	86.5(2) N(2)-Cd(1)-N(4)#1	102.8(3)	N(3)#1-Cd(1)-O(6)	106.4(2)
O(4)-Cd(1)-N(2)	114.3(3) O(3)-Cd(1)-N(4)#1	163.6(2)	N(2)-Cd(1)-O(6)	89.7(3)
N(3)#1-Cd(1)-N(2)	159.1(3) O(4)-Cd(1)-N(1)	171.0(2)	O(3)-Cd(1)-O(6)	122.8(2)
O(4)-Cd(1)-O(3)	82.1(3) N(3)#1-Cd(1)-N(1)	90.9(2)	N(4)#1-Cd(1)-O(6)	73.0(2)
N(3)#1-Cd(1)-O(3)	98.6(2) N(2)-Cd(1)-N(1)	68.2(3)	N(1)-Cd(1)-O(6)	138.6(2)
N(2)-Cd(1)-O(3)	82.9(3) O(3)-Cd(1)-N(1)	89.8(2)	Cd(1)-O(3)-H(3C)	109.5
O(4)-Cd(1)-N(4)#1	108.9(3) N(4)#1-Cd(1)-N(1)	78.3(2)	Cd(1)-O(3)-H(3D)	109.5
N(3)#1-Cd(1)-N(4)#1	70.6(2) O(4)-Cd(1)-O(6)	50.2(2)	N(5)-O(4)-Cd(1)	106.4(5)
N(5)-O(6)-Cd(1)	86.0(5) C(14)-N(3)-Cd(1)#1	115.1(6)	C(12)-N(2)-Cd(1)	118.2(7)
C(7)-N(1)-Cd(1)	113.3(5) C(6)-N(3)-Cd(1)#1	128.0(5)	C(8)-N(2)-Cd(1)	115.2(6)
C(2)-N(1)-Cd(1)	124.5(5) C(19)-N(4)-Cd(1)#1	128.0(6)	C(15)-N(4)-Cd(1)#1	113.3(5)

Table S4 Selected bond lengths [Å] and angles $[\circ]$ for 2.

Cd(1)-N(5)	2.279(2)	Cd(1)-N(2)	2.392(2)	Cl(1)-O(6)	1.416(4)
Cd(1)-N(4)	2.306(2)	Cd(1)-N(3)	2.401(2)	Cl(1)-O(7)	1.428(3)
Cd(1)-N(1) Cd(1)	-2.321(2)	Cl(1)-O(4)	1.302(4)	Cl(2)-O(10)	1.410(3)
O(3)	2.354(2)	Cl(1)-O(5)	1.391(4)	Cl(2)-O(9)	1.421(3)
Cl(2)-O(8)	1.425(3)	Cl(2)-O(11)	1.427(2)		
N(5)-Cd(1)-N(4)	106.25(9)	N(4)-Cd(1)-N(1)	99.76(8)	N(4)-Cd(1)-O(3)	94.38(8)
N(5)-Cd(1)-N(1)	105.22(9)	N(5)-Cd(1)-O(3)	84.64(9)	N(1)-Cd(1)-O(3)	159.56(8)
N(5)-Cd(1)-N(2)	91.53(9)	N(4)-Cd(1)-N(2)	161.81(8)	N(1)-Cd(1)-N(2)	71.19(8)
O(3)-Cd(1)-N(2)	91.00(8)	N(5)-Cd(1)-N(3)	166.66(9)	N(4)-Cd(1)-N(3)	71.14(7)
N(1)-Cd(1)-N(3)	88.12(8)	O(3)-Cd(1)-N(3)	82.55(7)	N(2)-Cd(1)-N(3)	92.41(7)
O(4)-Cl(1)-O(5)	116.7(5)	O(4)-Cl(1)-O(6)	109.7(6)	O(5)-Cl(1)-O(6)	100.6(4)
O(4)-Cl(1)-O(7)	110.5(2)	O(5)-Cl(1)-O(7)	110.6(2)	O(6)-Cl(1)-O(7)	108.1(2)
O(10)-Cl(2)-O(9)	109.1(2)	O(10)-Cl(2)-O(8)	108.1(2)	O(9)-Cl(2)-O(8)	106.6(3)
O(10)-Cl(2)-O(11)	112.06(17)	O(9)-Cl(2)-O(11)	109.31(16)	O(8)-Cl(2)-O(11)	111.5(2)
Cd(1)-O(3)-H(3A)	109.4	Cd(1)-O(3)-H(3B)	109.4	C(2)-N(1)-Cd(1)	125.53(18)
C(6)-N(1)-Cd(1)	115.68(17)	C(8)-N(2)-Cd(1)	127.00(17)	C(10)#1-N(3)-Cd(1)	126.78(16)
C(7)-N(2)-Cd(1)	113.67(18)	C(14)-N(3)-Cd(1)	114.05(17)	C(19)-N(4)-Cd(1)	123.90(19)
C(15)-N(4)-Cd(1)	116.55(16)	C(22)-N(5)-Cd(1)	163.8(3)		

Compound	Interaction	HA (Å)	DA (Å)	Angle (Å)
L	С13-Н13А…О1	2.583	3.486	163.73
	C18–H18A…N3	2.703	3.597	161.57
	π_{Cg1} - π_{Cg1}		3.442	
1	$O3-H3D\cdots O8^i$	2.072	3.021	169.44
	O3−H3C···O7 ⁱⁱ	1.899	2.745	145.64
	O13-H13B···O9	2.582	3.275	129.20
	01–H1A…07	2.678	3.539	154.41
	C18–H18A…O4	2.501	3.288	142.61
	С7–Н7А…О8	2.653	3.580	174.82
	C11-H11A…O6	2.510	3.341	148.92
	С10-Н10А…О5	2.696	3.345	127.53
	π_{Cg1} - π_{Cg1}		3.428	
2	O3−H3A…N7 ⁱⁱ	2.003	2.886	152.05
	O3−H3B···O9 ⁱⁱⁱ	2.548	3.202	125.47
	С7–Н7В…О10	2.541	3.381	149.57
	С7–Н7В…О8	2.681	3.540	152.85
	C18–H18A…O9	2.551	3.470	168.56
	C17–H17A…N7	2.727	3.627	163.01
	C16–H16A…O5	2.678	3.509	149.21
	C14–H14A…O5	2.718	3.541	147.92
	C21-H21B····O5	2.734	3.686	171.02
	С3-Н3С…О4	2.527	3.379	152.61
	C23–H23C…N7	2.650	3.564	157.44
	π_{Cg1} - π_{Cg1}		3.422	

Table S5 Intermolecular interactions in the crystal structure of compounds

i: x+1,y,z; ii: -x+1,-y+1,-z+1; iii: -x+1,y+1/2,-z+1/2; Cg₁ is the centroid of the pyridine ring.

Compoud	Temperature(K)	Excitation (λ , nm)	Emission(λ_{max} , nm)	CIE (x, y)	$ au_1$ (µs)	$ au_2(\mu s)$	<τ>(µs)
L	298	346	493	(0.30,0.46)	2.09 (42.59%)	14.89 (57.41%)	13.68
	77	346	485	(0.23,0.34)	0.61 (18.33%)	20.99 (81.67%)	20.86
1	298	346	555	(0.43,0.51)	1.02 (66.15%)	8.16 (33.85%)	6.75
1	77	346	528	(0.41,0.53)	0.97 (22.55%)	21.01 (77.45%)	20.75
2	298	346	558	(0.41,0.50	1.00 (56.38%)	8.66 (43.62%)	7.67
2	77	346	520	(0.38,0.56)	0.89 (22.80%)	20.9 (77.20%)	20.65

Table S6 Photoluminescent data for L, 1 and 2 in the solid state at 298 K and 77K

Table S7 Photoluminescent data for L, 1 and 2 in solution at 298 K $\,$

Compoud	Absorption (nm)	Emission () nm)	$CIE(\mathbf{x},\mathbf{y})$	Lifetir	Lifetime (µs)		Quantum	Conditions ^b
ε/dm	ε/dm ³ cm ⁻¹ mol ⁻¹	$\lambda_{\text{max}}, \mu_{\text{max}}, \mu_{\text{max}}$	$\operatorname{CIL}(\mathbf{X},\mathbf{y})$	$ au_1$	$ au_2$	<u (µs)<="" td=""><td>yields(Φ)^a</td><td>Conditions</td></u>	yields(Φ) ^a	Conditions
L	349 (39103)	453	0.30, 0.62	2.23(29.98%)	18.74(70.02%)	17.93	0.114	CH ₃ CN
	357 (42067)	421	0.16, 0.12	1.55(33.11%)	18.82(66.89%)	18.15	0.120	DMSO
	360 (39457)	433	0.16, 0.13	1.56(37.52%)	17.46 (62.48%)	16.66	0.163	CH ₃ CN
1	366 (32648)	547	0.38, 0.60	1.89 (34.51%)	18.08 (65.49%)	17.24	0.085	CH ₃ OH
1	360 (44213)	429	0.16, 0.13	1.76 (44.30%)	17.56 (55.70%)	16.39	0.178	CH ₃ COCH ₃ ,
	353 (45087)	423	0.16, 0.14	1.73 (50.34%)	17.80 (49.66%)	16.36	0.207	CH ₃ Cl,
	351 (36977)	421	0.16, 0.14	1.38 (36.07%)	17.89 (63.93%)	17.20	0.223	THF
	378 (38865)	501	0.21, 0.33	1.63 (34.63%)	19.95 (65.37%)	19.18	0.126	DMSO
	365 (38371)	490	0.21, 0.37	2.13 (35.24%)	19.95 (64.76%)	18.97	0.145	CH ₃ CN
	330 (17246), 363 (27289)	461	0.30, 0.35	1.63 (43.08%)	18.30 (56.92%)	17.25	0.093	CH ₃ OH
2	329 (26380), 363 (40559)	484	0.22, 0.43	2.23 (37.07%)	20.15 (62.93%)	19.05	0.200	CH ₃ COCH3
	330 (26020), 371 (36156)	474	0.15, 0.31	2.05 (38.69%)	20.10 (61.31%)	17.87	0.213	CH ₃ Cl

329 (26261), 361	151	0.10.0.20	1.96 (46.73%) 19.76 (53.27%)	18.24	0.225	тиг
(43985)	454	0.19, 0.20	1.90 (40.7576) 19.70 (55.2776)	10.34	0.225	1111

^aDetermined using quinine sulfate in 0.1 M sulphuric acid ($c = 1 \times 10^{-5}$ M, $\Phi = 0.546$).

^bConcentration in solution: $c = 1 \times 10^{-5}$ M.

Compaud	Excitation (λ_{ex}	Emission (λ_{max} ,	$CIE(\mathbf{x},\mathbf{y})$	Lifeti	Lifetime (µs)		Quantum	CH ₃ OH content
Compoud	nm)	nm)	$\operatorname{CIE}(\mathbf{x},\mathbf{y})$	$ au_1$	$ au_2$	$- < l < (\mu s)$	yields(Φ) ^a	(Vol %) ^b
	350	426	0.16, 0.13	2.13(35.24%)	19.95(64.76%)	18.97	0.163	0
	350	435	0.15, 0.20	1.94(44.17%)	22.17(55.83%)	20.87	0.143	20
1	350	460	0.15, 0.29	2.31 (39.59%)	26.82 (60.41%)	25.51	0.139	40
1	350	490	0.16, 0.42	2.08 (43.40%)	23.7 (56.6%)	22.33	0.138	60
	350	512	0.22, 0.64	1.95 (37.91%)	20.73 (62.09%)	19.71	0.117	80
	350	526	0.38, 0.60	1.63 (43.08%)	18.30 (56.92%)	17.25	0.093	100
	360	490	0.21, 0.37	1.04 (21.29%)	27.49 (78.71%)	27.23	0.145	0
	360	494	0.34, 0.44	0.55 (19.84%)	24.13 (80.16%)	24.00	0.142	20
	360	502	0.36, 0.45	1.04 (23.64%)	18.72 (76.36%)	18.43	0.132	40
2	360	511	0.36, 0.44	1.39 (27.94%)	17.30 (72.76%)	16.83	0.110	60
	360	521	0.36, 0.45	1.48(27.94%)	17.93 (72.76%)	17.42	0.103	80
	360	461	0.30, 0.35	1.25(52.93%)	11.45(47.07%)	10.33	0.085	100

Table S8 Photoluminescent data for 1 and 2 in CH₃CN/CH₃OH mixed solvent with fixed concentration.

^aDetermined using quinine sulfate in 0.1 M sulphuric acid ($c = 1 \times 10^{-5}$ M, $\Phi = 0.546$).

^bConcentration in solution: $c = 1 \times 10^{-5}$ M.

Figure S8. The coordinating polyhedron of 1 (a) and 2 (b)

Figure S9. UV/vis absorption spectra of 1 and 2 in DMSO, CH₃CN, CH₃OH, CH₃COCH₃, CHCl₃ and THF ($c = 10^{-5}$ M) at 298 K.

Figure S10. The luminescence decay curves of 1 and 2 in different solution at 298 K.

Figure S11. The luminescence decay curves of 1 and 2 in mixed solution as a function of CH_3OH content at 298 K.