Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis and Characterization of the Rare-Earth Dion-Jacobson Layered Perovskites, *APrNb*₂O₇ (*A* = Rb, Cs and CuCl)

Dariush Montasserasadi,^{a,b} Mark Granier,^{a,b} Leonard Spinu,^{b,c} Satish Chandra Rai,^c Weilie Zhou,^c and John B. Wiley^{a,b,*}

^aDepartment of Chemistry, ^bAdvanced Materials Research Institute, ^c Department of Physics University of New Orleans, New Orleans, LA 70148-2820, United States

Page

Fig. S1:	XRD RbPrNb ₂ O ₇ prepared with Pr_6O_{11} in a RbCl flux and Pr_2O_3 in an O_2 atmosphere	S2
Fig. S2:	XRD (CuCl)PrNb ₂ O ₇ prepared from RbPrNb ₂ O ₇ and CsPrNb ₂ O ₇	S 3
Fig. S3:	XRD (CuCl)PrNb ₂ O ₇ prepared from <i>A</i> PrNb ₂ O ₇ (<i>A</i> = Li, Rb) and CuCl ₂	S4
Fig. S4:	Refinement of RbPrNb ₂ O ₇ in <i>P4/mmm</i> space group	S5
Fig. S5:	Refinement of CsPrNb ₂ O ₇ in <i>P4/mmm</i> space group	S 6
Tables S1-S3:	Crystal information for CsPrNb ₂ O ₇	S7
Fig. S6:	Structure of CsPrNb ₂ O ₇	S 8
Fig. S7:	TEM, ED, and elemental analysis for CsPrNb ₂ O ₇ , RbPrNb ₂ O ₇ , and elemental analysis (CuCl)PrNb ₂ O ₇	S9
Fig. S8:	Magnetic properties of CsPrNb ₂ O ₇	S10
Fig. S9:	M(H) versus temperature for RbPrNb ₂ O ₇	S11
Fig. S10:	M(H) versus temperature for (CuCl)PrNb ₂ O ₇	S11
Fig. S11:	UV absorption spectrum of the (CuCl)PrNb ₂ O ₇	S12
Fig. S12:	Refinement of (CuCl)PrNb ₂ O ₇ in P4/mmm	S13
Fig. S13:	XRD of (CuCl)PrNb ₂ O ₇ after TGA/DTA	S14

Fig. S1: XRDs of RbPrNb₂O₇ prepared from molten salt RbCl and from Pr_2O_3 and O_2 . (a-c) $\frac{1}{2}$ Rb₂CO₃ : $\frac{1}{6}$ Pr₆O₁₁ : Nb₂O₅ : 5 RbCl -temperature 1050 °C 2hrs -temperature 1060 °C 2 hrs -temperature 1200°C 2 hrs (d) $\frac{1}{2}$ Rb₂CO₃ : $\frac{1}{2}$ Pr₂O₃ : Nb₂O₅ + O₂ temperature 1000 °C 6.5hrs (e) $\frac{1}{2}$ Rb₂CO₃ : $\frac{1}{6}$ Pr₆O₁₁ : Nb₂O₅ temperature 1100 °C 2 days.

Fig. S2: The XRD pattern of (CuCl)PrNb₂O₇ which has been prepared from (a) RbPrNb₂O₇ at 325 °C over 7 days and (b) CsPrNb₂O₇ 340 °C over 7 days.

Fig. S3: XRD (CuCl)PrNb₂O₇ prepared from LiPrNb₂O₇ and CuCl₂. (a) (CuCl)PrNb₂O₇ (LiPrNb₂O₇:CuCl₂ 1:2) at 300 °C, 4 days. (b) LiPrNb₂O₇, (c) (CuCl)PrNb₂O₇ prepared from RbPrNb₂O₇ 355 °C 7 days, and (d) RbPrNb₂O₇.

Fig. S4: Refinement of RbPrNb₂O₇ in *P*4/*mmm* space group ($R_p = 37.1\%$, $R_{wp} = 27.9\%$, and $\chi^2 = 4.946$). Orthorhombic model in *Imma* space group was found to be superior.

Fig. S5: Observed and calculated data for the Rietveld refinement of CsPrNb₂O₇ in *P4/mmm* space group. Observed data is indicated by crosses, calculated pattern by a (red) solid line, and the bottom (blue) curve is the difference plot. Peak positions are presented as black tic marks. (Z=1; R_p =13.17% R_{wp} = 12.26%; χ^2 = 1.837.)

Atom	Site	v	37	7	a	$IL(\lambda^2)$
Atom	Sile	Х	У	Z	g	$U_{iso}(A^{-})$
Cs	1b	0	0	0.5	1.09(8)	0.023(1)
Pr	1a	0	0	0	1.01(9)	0.012(1)
Nb	2h	0.5	0.5	0.2014(1)	1.03(9)	0.011(3)
O_1	4i	0	0.5	0.1671	1	0.005(5)
O_2	2h	0.5	0.5	0.3692	1	0.01(2)
O ₃	1c	0.5	0.5	0	1	0.08(2)

Table S1: Crystallographic Data for CsPrNb₂O₇.

Z=1; R_p =13.17% R_{wp} =12.26% and χ^2 =1.837 Space group *P*4/*mmm* a = 3.8668(2), c = 11.163(1) V = 166.92(2) Å³

Table S2: Bond valence sum results for CsLaNb₂O₇ and CsPrNb₂O₇.

CsI	aNb ₂ O ₇	CsPrNb ₂ O ₇		
Cs	0.9876	Cs	1.0529	
La	2.8808	Pr	3.0805	
Nb	5.2305	Nb	5.2374	

Table S3: Selected Bond Lengths Extracted from the Refined Structure of CsPrNb₂O₇ versus CsLaNb₂O₇.

CsI	aNb ₂ O ₇	CsPrNb ₂ O ₇		
Bond Type	Length (Å)	Bond Type	Length (Å)	
Cs-O2 x 8	3.191(4)	Cs-O2 x 8	3.1673(9)	
La-O1 x 8	2.672(4)	Pr-O1 x 8	2.6021(1)	
La-O3 x 4	2.763(1)	Pr-O3 x 4	2.73427(1)	
Nb-O1 x 4	1.999(1)	Nb-O1 x 4	1.9987(6)	
Nb-O2 x 1	1.736(7)	Nb-O2 x 1	1.7350(1)	
Nb-O3 x 1	2.248(1)	Nb-O3 x 1	2.2481(1)	

Fig. S6: Crystal structure for CsPrNb₂O₇.

Fig. S7: TEM image, SAED and elemental analysis of (a,b) $CsPrNb_2O_7$, (c,d) $RbPrNb_2O_7$, and (e) elemental analysis of (CuCl) $PrNb_2O_7$.

Fig. S8: (a) Temperature dependence of magnetic susceptibility and (b) reverse susceptibility of CsPrNb₂O₇. Measurments were carried out on cooling at a constant field of 100 Oe. (red circle shows FC and occluded black triangle shows ZFC). The magnetization vs the magnetic field for CsPrNb₂O₇ at (c) 2 K and (d) 300 K.

Fig. S9: The magnetization vs the magnetic field for RbPrNb₂O₇ at (a) 4K and (b) 300 K.

Fig. S10: The magnetization versus magnetic field for $(CuCl)PrNb_2O_7$ at (a) 2 K (inset shows slight hysteresis of 15 Oe) and (b) 300 K (inset, hysteresis of 40 Oe).

Fig. S11: UV-Vis spectra of the (a) $CuCl_2 \cdot 2H_2O$ and (b) $(CuCl)PrNb_2O_7$.

Fig. S12: Refinement of (CuCl)PrNb₂O₇ in *P4/mmm* space group. Observed and calculated data for the Rietveld refinement of (CuCl)PrNb₂O₇. Observed data are indicated by crosses, calculated pattern by a red solid line, and the bottom blue curve is the difference plot. Peak positions are presented by black dot color. (Z=1; a=3.86421(9) Å, c=11.6782(2) Å V= 174.381(8) Å³; R_p=11.52% R_{wp}= 8.64% and χ^2 = 6.172.) Orthorhombic model in *Pbam* space group was superior.

Fig. S13: XRD of (CuCl)PrNb₂O₇ after TGA/DTA (a) at 1000 °C, (b) PrNbO₄ and (c) CuNbO₃.