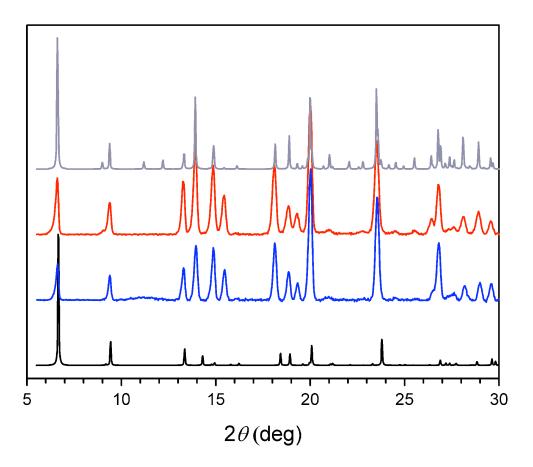

Supporting Information for:
Hydrogen Storage in Water-Stable Metal-Organic Frameworks Incorporating 1,3- and 1,4-Benzenedipyrazolate
Hye Jin Choi, Mircea Dinca, Anne Dailly, and Jeffrey R. Long*
Department of Chemistry, University of California, Berkeley, California 94720 and Chemical
and Environmental Sciences Laboratory, General Motors Corporation, Warren, Michigan 48090
*e-mail: jrlong@berkeley.edu
Energy & Environmental Science

Table \$1. Crystallographic Data for Co(1,3-BDP)·DEF·0.5H₂O.


Identification	Co(BDP)·DEF·0.5H ₂ O
Formula	CoC ₁₇ H ₂₀ N ₅ O _{1.5}
FW	377.31
<i>T</i> , K	150(2)
Wavelength, Å	0.77490
Crystal system, space group	Tetragonal, I4(1)/amd
Z	16
a, Å	22.847(15)
c, Å	12.458(16)
V, Å ³	6503(10)
$d_{\text{calc}}, \text{g/cm}^3$	1.542
Adsorption coefficient, mm ⁻¹	1.074
F(000)	2674
Crystal size, mm ³	$0.015 \times 0.015 \times 0.04$
Theta range for data collection	2.75-19.14°
Index range	$-19 \le h \le 19, -19 \le k \le 19, -10 \le l \le 10$
Reflections collected	10681
Independent reflections	559 $[R(int) = 0.1042]$
Data/restrains/parameters	559 / 6 / 81
GOF on F^2	1.341
Largest diff. peak and hole, e-Å-3	0.346 and -0.271
$R_1 (wR_2)^a$, [I>2sigma(I)]	0.0635 (0.1642)
$R_1 (wR_2)^a$, all data	0.0794 (0.1748)

 $^{{}^{}a}R_{1} = \Sigma ||F_{0}| - F_{c}||/\Sigma |F_{0}|, wR_{2} = \{\Sigma [w(F_{0}{}^{2} - F_{0}{}^{2})^{2}]/\Sigma [w(F_{0}{}^{2})^{2}]\}^{1/2}.$

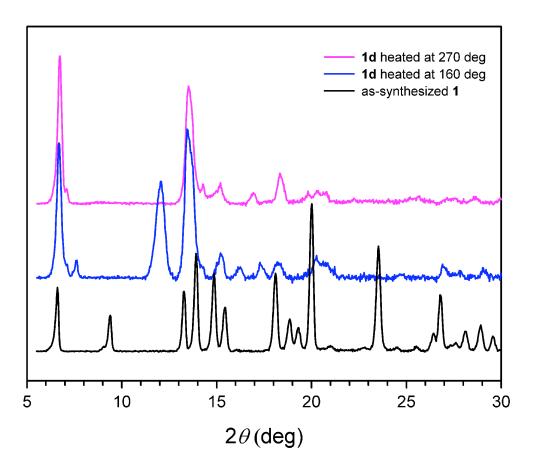
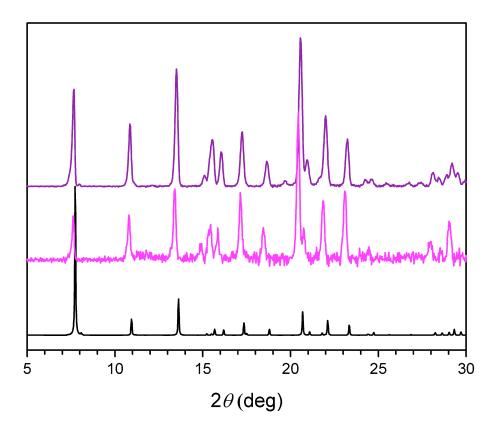
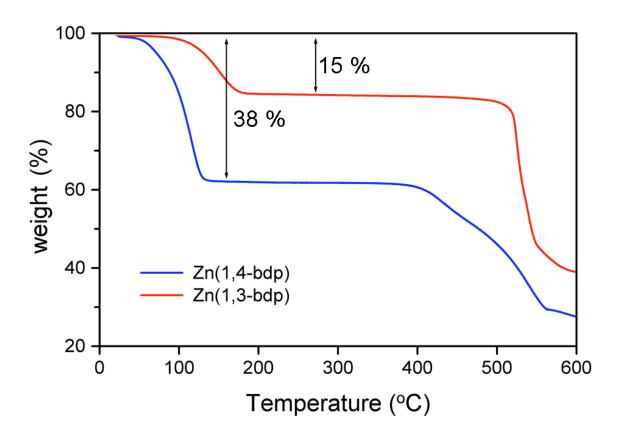
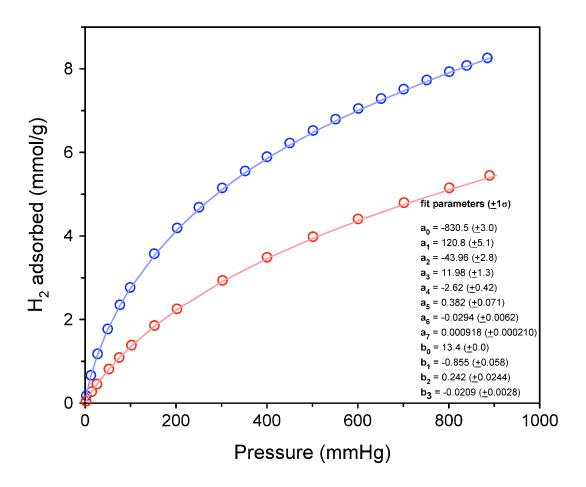
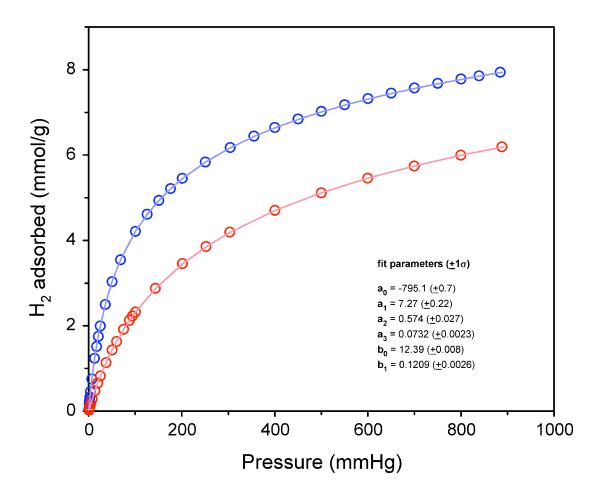


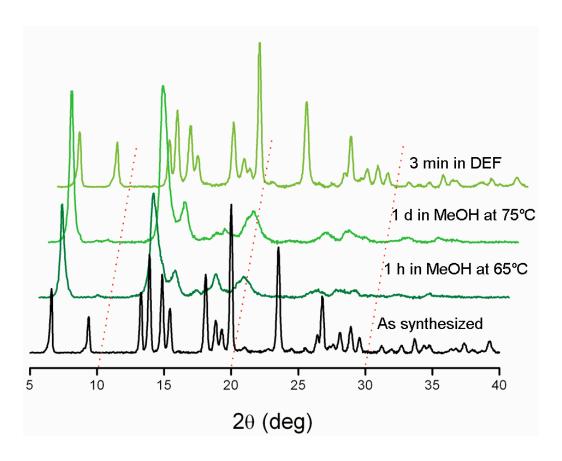
Fig. S1 A portion of the crystal structure of **1**, which is isostructural to Co(1,4-BDP). Red, blue, and grey spheres represent Zn, N, and C atoms, respectively.


¹H. J. Choi, M. Dinca, J. R. Long, J. Am. Chem. Soc. 2008, **130**, 7848.


Fig. S2 Powder X-ray diffraction patterns for the crystallographic simulation for $Co(1,4-BDP)\cdot 2DEF\cdot H_2O$ (black) and its pulverized crystals (blue), and $Zn(1,4-BDP)\cdot 2DEF\cdot H_2O$ (1) (red) and its simulation pattern based on the unit cell refinement (grey).


Fig. S3 Powder X-ray diffraction patterns for the as-synthesized solid **1** (black), and its desolvated form **1d** heated at 160 °C (blue) and 270 °C (pink).


Fig. S4 Powder X-ray diffraction patterns for the crystallographic simulation for Co(1,3-BDP)·DEF·0.5H₂O (**2**) (black), pulverized crystals of **2** (pink) and Zn(1,3-BDP)·0.7DMF·0.5H₂O (**3**) (dark pink).


Fig. S5 Thermogravimetric analysis data for $Zn(1,4-BDP)\cdot 2DEF\cdot H_2O$ (1) (blue) and $Zn(1,3-BDP)\cdot 0.7DMF\cdot 0.5H_2O$ (3) (red) measured using a ramp rate of 1.0 °C/min.

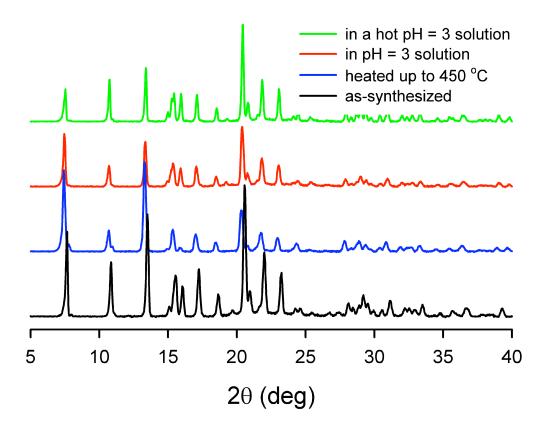

Fig. S6 H₂ adsorption isotherms for **1d** at 77 K (blue) and 87 K (red), and the respective virial fits (solid lines).

Fig. S7 H₂ adsorption isotherms for **3d** at 77 K (blue) and 87 K (red), and the respective virial fits (solid lines).

Fig. S8 Powder X-ray diffraction patterns for **3** treated under various conditions, showing its high thermal stability as well as chemical stability.

Fig. S9 Powder X-ray diffraction patterns for **3** treated under various conditions, showing its high thermal stability as well as chemical stability.

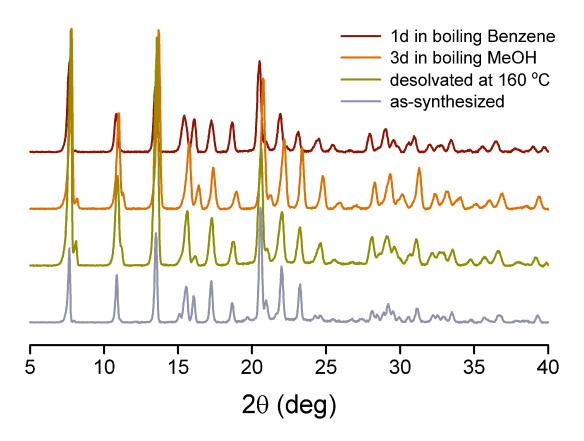


Fig. S10 Powder X-ray diffraction patterns for 3 treated under various conditions (1d = 1 day, 3d = 3 days), showing its high thermal stability as well as chemical stability.