Supporting Information

In Situ ATR-FTIR Analysis of the CO-Tolerance Mechanism on Pt₂Ru₃/C Catalysts Prepared by the Nanocapsule Method

T. Sato,^a K. Kunimatsu,^b K. Okaya,^a H. Yano,^b M. Watanabe,^b and H. Uchida ^{b, c*}
^a Interdisciplinary Graduate School of Medicine and Engineering,
^b Fuel Cell Nanomaterials Center, ^c Clean Energy Research Center, University of Yamanashi, Takeda 4, Kofu 400-8510, Japan

Figure S1. Deconvolution of FTIR spectra of (a) c-Pt₂Ru₃/C and (b) n-Pt₂Ru₃/C electrodes observed at 0.02 V and 25°C in 1% CO (H₂ balance)-saturated 0.1 M HClO₄ solution after 20 min of the CO adsorption. Curve fitting was performed for all spectra with the full width at half maximum (FWHM) fixed as a constant while allowing the peak wavenumbers and areas to vary, based on data in literature. $^{1\cdot5}$ The CO $_{L}$ band around 2035-1990 cm^{-1} was deconvoluted into three components, 2035, 2010, and 1990 cm⁻¹. The band at 2035 cm⁻¹ was assigned to the CO_L on Pt terrace site. The bands around 2010 and 1990 cm⁻¹ were assigned to the CO_Ls on Pt step-edge sites, respectively. The peak wavenumber of CO_L(terrace) of Pt_2Ru_3 was similar to the case of Pt/C.¹ However, the peak wavenumber of CO_1 (step-edge)-1 and -2 of Pt₂Ru₃ were lower than these of Pt/C, it was interpreted in terms of electronic modification by Ru. The peak wavenumbers of these COs of Pt₂Ru₃ or Pt¹ nanoparticles were lower than those of bulk Pt electrode, because CO_{ad} adsorbed strongly on nanoparticles than the case of bulk electrode. The CO-Ru bands around 1960-1910 cm⁻¹ were deconvoluted into two components, 1955 and 1920 cm⁻¹, which were assigned to the CO_B on Ru-Ru and Ru-Pt sites, respectively.²⁻⁵ The CO_{BS} bands around 1850-1790 cm⁻¹ were also deconvoluted into two components, which could be assigned to the CO_Bs on terrace and step-edge sites, respectively. These spectra were normalized with respect to the total intensities of peaks assigned to CO_L, *I*[CO_L]; (O) experimental spectrum, (——) sum of seven peaks, (——)

Supplementary Material (ESI) for Energy & Environmental Science This journal is © Royal Society of Chemistry 2010

Figure S2. (a) TEM images (by Hitachi H-9500) and (b) particle size distribution histograms of n-Pt₂Ru₃/C (H₂). The histogram was obtained among 500 particles in the TEM images. The particle size distribution after H₂-treatment was 3.6 ± 0.4 nm, which was nearly identical with the value of the catalyst without treatment (3.6 ± 0.3 nm, see Table 1 in the article); (\blacksquare) n-Pt₂Ru₃/C (H₂), (--O--) n-Pt₂Ru₃/C (without H₂ treatment).

Figure S3. Cyclic voltammograms of (—) n-Pt₂Ru₃/C (H₂) and (- - -) n-Pt₂Ru₃/C electrodes measured in N₂-purged 0.1 M HClO₄ at 25°C and a potential sweep rate of 0.05 V s⁻¹. The values of electrochemically active area $S_{\rm H}$ evaluated from the hydrogen desorption charge in the positive-going scan were 49 m² g_{metal}⁻¹ and 37 m² g_{metal}⁻¹ for n-Pt₂Ru₃/C (H₂) and n-Pt₂Ru₃/C, respectively.

References

- 1 T. Sato, K. Kunimatsu, H. Uchida and M. Watanabe, *Electrochim. Acta*, 2007, 53, 1265.
- 2 A. López-Cudero, A. Cuesta and C. Gutiérrez, J. Electroanal. Chem., 2005, 579, 1.
- 3 A. López-Cudero, A. Cuesta and C. Gutiérrez, J. Electroanal. Chem., 2006, 586, 204.
- 4 E. A. Baranova, C. Bock, D. Ilin, D. Wang and B. MacDougall, *Surf. Sci.*, 2006, **600**, 3502.
- 5 T. Iwasita, H. Hoster, A. John-Amacker, W. F. Lin and W. Vielstich, *Langmuir*, 2000, **16**, 522.