Supplementary Material (ESI) for Energy & Environmental Science This journal is (c) The Royal Society of Chemistry 2010

Submitted to Energy & Environmental Science

October 26, 2010

Electronic Supporting Information

To be published in the themed issue on **Carbon Nanostructures for Energy** Guest Edited by Professors Dirk Guldi, Andreas Hirsch and Nazario Martin

Photoinduced Processes of the Supramolecularly Functionalized Semi-Conductive SWCNTs with Porphyrins via Ion Pair Interactions

Sushanta K. Das,^a Navaneetha K. Subbaiyan,^a Francis D'Souza^{a,*} Atula S. D. Sandanayaka,^{b,c} Taku Hasobe,^{b,*} and Osamu Ito^{d,*}

^aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA, FAX: 316-978-3431, E-mail: <u>Francis.DSouza@wichita.edu</u>)

^b School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, 923-1292 Japan.

^{cb} Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522 and PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan; Email: <u>hasobe@chem.keio.ac.jp</u>

^{*d*} *Fullerene Group, NIMS, Namiki, Tsukuba, and CarbonPhotoScience Lab., Kita-Nakayama, Izumi-ku, Sendai, 981-3215, and NIMS, Namiki, Tsukuba, Japan. E-mail: <u>ito@tagen.tohoku.ac.jp</u>*

Received

Supplementary Material (ESI) for Energy & Environmental Science This journal is (c) The Royal Society of Chemistry 2010

Fig. S1. TEM images for dried samples prepared from homogenous DMF solution. (A) SWCNT(6,5)/PyrCOO , (B) SWCNT(7,6)/PyrCOO , (C) SWCNT(6,5)/PyrCOO /(TMPyP⁺)H₂, (D) SWCNT(7,6)/PyrCOO /(TMPyP⁺)H₂, (E) SWCNT(6,5)/PyrCOO /(TMPyP⁺)Zn, and (F) SWCNT(7,6)/ PyrCOO /(TMPyP⁺)Zn.

This journal is (c) The Royal Society of Chemistry 2010

Estimation of Molecular Stoichiometry of the Nanohybrids

Estimation of ratio of Pyr-R to SWCNT

1) MW of Pyr-R ≈ 400

mol of 4 mg of Pyr-R $\approx 0.004/400 \approx 1 \times 10^{-5}$ mol:

2) MW of SWCNT(ϕ 1nm x 800 nm) $\approx 1 \times 10^6$ SWCNT

mol of 2 mg of SWCNT $\approx 0.002/1 \times 10^6 \approx 2 \times 10^{-9}$ mol.

- 3) Pyr-R/SWCNT $\approx 1 \times 10^{-5}/2 \times 10^{-9} = 5000$ mols per one mol of 800 nm SWCNT.
- 4) length of Pyr-R ≈ 0.5 nm, length of SWCNT ≈ 800 nm,

 $5000 \ge 0.5 = 2500 \text{ nm}/800 \text{ nm} = \text{ca. 3}$ (Pyr-R every 3 molecules on 1 nm of SWCNT).

Estimation of ratio of MP to SWCNT

- 5) Porphyrins; Abs. = 1 (1 cm cell, from Fig. 2), molar extinction coefficient = $10^5 \text{ M}^{-1} \text{ cm}^{-1}$. Concentration = $1/10^5 = 1 \times 10^{-5} \text{ mol/L}$;
- 6) In 15 mL, $1 \times 10^{-5} \times 1.5 \times 10^{-3}$ mol = 15×10^{-9} mol
- 7) 15 molecules on SWCNT; one MP every 75 nm of SWCNT.

Fig. S2-1. Absorption spectra in DMF: (Left) (i) SWCNT(6,5)/PyrCOO /(TMPyP⁺)H₂, (ii) SWCNT(6,5)/PyrCOO , and (iii) (TMPyP⁺)H₂, and (**Right**) (i) SWCNT(7,6)/PyrCOO /(TMPyP⁺)H₂, (ii) SWCNT(7,6)/PyrCOO , and (iii) (TMPyP⁺)H₂.

Fig. S2-2. Absorption spectra in DMF: (Left) (i) $SWCNT(6,5)/PyrNH_3^+/(TPPS^-)H_2$, (ii) $SWCNT(6,5)/PyrNH_3^+$, and (iii) $(TPPS^-)H_2$. (Right) $SWCNT(7,6)/PyrNH_3^+/(TPPS^-)H_2$, (ii) $SWCNT(7,6)/PyrNH_3^+$, and (iii) $PyrNH_3^+$.

Fig. S2-3. Absorption spectra in DMF: (Left) (i) $SWCNT(6,5)/PyrNH_3^+/(TPPS^-)Zn$, (ii) $SWCNT(6,5)/PyrNH_3^+$, and (iii) (TPPS⁻)Zn. (Right) $SWCNT(7,6)/PyrNH_3^+/(TPPS^-)Zn$, (ii) $SWCNT(7,6)/PyrNH_3^+$, and (iii) $PyrNH_3^+$.

Fig. S3-1. Steady-state fluorescence spectra in DMF($\lambda_{ex} = 425$ nm). Left (i) SWCNT(6,5)/PyrCOO /(TMPyP⁺)Zn and (ii) (TMPyP⁺)Zn. Right (i) SWCNT(7,6)/PyrCOO /(TMPyP⁺)Zn and (ii) (TMPyP⁺)Zn.

Supplementary Material (ESI) for Energy & Environmental Science This journal is (c) The Royal Society of Chemistry 2010

Fig. S3-2. Steady-state fluorescence spectra in DMF ($\lambda_{ex} = 428$ nm). (Left) SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)H₂ and (ii) (TPPS⁻)H₂. (TMPyP⁺)Zn (i) SWCNT(7,6)/PyrNH₃⁺/(TPPS⁻)H₂ and (ii) (TPPS⁻)H₂.

This journal is (c) The Royal Society of Chemistry 2010

Fig. S3-3. Steady-state fluorescence spectra in DMF ($\lambda_{ex} = 428$ nm). (Left) SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)Zn and (ii) (TPPS⁻)Zn. (TMPyP⁺)Zn (i) SWCNT(7,6)/PyrNH₃⁺/(TPPS⁻)Zn and (ii) (TPPS⁻)Zn.

Fig. S4-1 Fluorescence decays in DMF. $\lambda_{ex} = 408$ nm. (Left) (i) SWCNT(7,6)/PyrNH₃⁺/(TPPS⁻)Zn, (ii) SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)Zn and (iii) (TPPS⁻)Zn. (Right) (i) SWCNT(7,6)/PyrNH₃⁺/(TPPS⁻)H₂, (ii) SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)H₂, and (iii) (TPPS⁻)H₂.

This journal is (c) The Royal Society of Chemistry 2010

Fig. S4-2. Fluorescence decays of (i) SWCNT(7,6)/PyrCOO /(TMPyP⁺)Zn (ii) SWCNT(6,5) /PyrCOO /(TMPyP⁺) Zn and (iii) (TMPyP⁺)Zn in DMF. $\lambda_{ex} = 408$ nm.

Fig. S5-1. Nanosecond transient absorption spectra of SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)Zn observed by 532 nm (ca. 3 mJ/ pulse) laser irradiation in DMF. Inset: Absorption-time profile.

Fig. S5-2. Nanosecond transient absorption spectra of SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)H₂, SWCNT(7,6)/PyrNH₃⁺/(TPPS⁻)H₂ observed by 532 nm (ca. 3 mJ/ pulse) laser irradiation in DMF. Inset: Absorption-time profile.

Fig. S5-3. Nanosecond transient absorption spectra of SWCNT(6,5)/PyrCOO /(TMPyP⁺)Zn and SWCNT(7,6) /PyrCOO /(TMPyP⁺)Zn observed by 532 nm (ca. 3 mJ/ pulse) laser irradiation in DMF. Inset: Absorption-time profile.

Fig. S5-4. Nanosecond transient absorption spectra of SWCNT(6,5)/PyrCOO /(TMPyP⁺)H₂ and SWCNT(7,6)/PyrCOO /(TMPyP⁺)H₂ observed by 532 nm (ca. 3 mJ/ pulse) laser irradiation in DMF. Inset: Absorption-time profile.

Fig. S6-1. Steady-state absorption spectra of SWCNT(6,5)/PyrCOO /(TMPyP⁺)Zn in Arsaturated DMF solution measured after 5 laser-shots with laser light (6-ns pulse width) at 532-nm in the presence of HV^{2+} (0.5 mM) and BNAH (i) 0, (ii) 0.5, (iii) 1.0, (iv) 1.5, (v) 2.0 (vi) 2.5 (vii) 3.0 (viii) 3.5 and (ix) 4.0 mM.

Fig. S6-2. Steady-state absorption spectra of (Left) SWCNT(6,5)/PyrCOO /(TMPyP⁺)H₂ and (Right) SWCNT(7,6)/PyrCOO /(TMPyP⁺)H₂ in Ar-saturated DMF solution measured after 5 laser-shots with laser light (6-ns pulse width) at 532-nm in the presence of HV^{2+} (0.5 mM) and BNAH (i) 0, (ii) 0.5, (iii) 1.0, (iv) 1.5, (v) 2.0 (vi) 2.5 (vii) 3.0 (viii) 3.5 and (ix) 4.0 mM.

Fig. S6-3. Steady-state absorption spectra of (Left) SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)H₂ and (Right) SWCNT(7,6)/PyrNH₃⁺/(TPPS⁻)H₂ in Ar-saturated DMF solution measured after 5 laser-shots with laser light (6-ns pulse width) at 532-nm in the presence of HV^{2+} (0.5 mM) and BNAH (i) 0, (ii) 0.5, (iii) 1.0, (iv) 1.5, (v) 2.0 (vi) 2.5 (vii) 3.0 (viii) 3.5 and (ix) 4.0 mM.

Fig. S6-4. Steady-state absorption spectra of (Left) SWCNT(6,5)/PyrNH₃⁺/(TPPS⁻)Zn and (Right) SWCNT(7,6) /PyrNH₃⁺/(TPPS⁻)Zn in Ar-saturated DMF solution measured after 5 laser-shots with laser light (6-ns pulse width) at 532-nm in the presence of HV^{2+} (0.5 mM) and BNAH (i) 0, (ii) 0.5, (iii) 1.0, (iv) 1.5, (v) 2.0 (vi) 2.5 (vii) 3.0 (viii) 3.5 and (ix) 4.0 mM.