Supporting Information

High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials

M. Sevilla^{a,b}, A.B. Fuertes^a, R. Mokaya^b

^a Instituto Nacional del Carbón (CSIC), P.O. Box 73, 33080 Oviedo, Spain

^b School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U. K.

This journal is © Royal Society of Chemistry 2011

Figure S1. FTIR spectra of the cellulose (C) and eucalyptus sawdust (E) derived hydrochars...

Figure S2. Hydrogen uptake isotherms at -186°C of activated carbons E-1/4-700 and C4-1/2-700.

This journal is © Royal Society of Chemistry 2011

Figure S3. Correlation between hydrogen uptake capacity (at -196°C and 20 bar) and surface area for the activated carbons reported in this work (\bigcirc), KOH activated CDCs (\Box) [36] and other activated carbons found in the literature (Δ) [31, 34, 37, 39]. The solid line corresponds to the Chahine rule.

This journal is © Royal Society of Chemistry 2011

Figure S4. Correlation between hydrogen uptake capacity and the total pore volume of activated (\circ) and doubly activated (\bullet) carbons. The solid line corresponds to the fitting of the experimental points to a line passing through the origin.