Supplementary Material (ESI) for Energy & Environmental Science This journal is (c) The Royal Society of Chemistry 2011

Electronic Supplementary Information Direct biofuel low-temperature solid oxide fuel cells

Haiying Qin,^{*a,b*} Zhigang Zhu,^{*a,c*} Qinghua Liu,^{*a*} Yifu Jing,^{*a*} Rizwan Raza,^{*a,d*} Syedkhalid Imran,^{*a*} Manish Singh,^{*c,e*} Ghazanfar Abbas^{*c,d*} and Bin Zhu*^{*a*}

a Department of Energy Technology, Royal Institute of Technology, KTH, 10044, Stockholm, Sweden. Tel: +46 8 790 7403; E-mail: binzhu@kth.se b Department of Chemical and Biological, Zhejiang University, 310027, Hangzhou, China c GETT Fuel Cell AB, Stora Nygatan 33, S-10314, Stockholm, Sweden d Department of Physics, COMSATS University, Lahore, 54000, Pakistan e Department of ceramic engineering, Institute of Technolgy-Banaras Hindu University, 221005, Varanasi, India

Preparation of electrolyte and electrode

The electrolyte for investigation was samarium doped ceria-sodium carbonate composite (NSDC) electrolyte prepared by carbonate co-precipitation method. Firstly, $Ce(NO_3)_3 \cdot 6H_2O$ (99.99%, Sigma–Aldrich) and Sm(NO₃)₃·6H₂O (99.9%, Sigma–Aldrich) were dissolved in deionized water with a stoichiometric molar ratio of Ce³⁺: Sm³⁺=4:1 to obtain a 100 ml solution (the molar concentration of the total rare-earth metal cation ion is 1.0 M). Then 200 ml of Na₂CO₃ solution (1.0 M) was added slowly (with a flow rate of 10 mL min⁻¹) into the solution under vigorous stirring to form a white precipitation at room temperature. After stirring for 2 h, the precipitation was filtered by suction traction method and dried in the oven over night at 50 °C. Finally, the NSDC precursor was crushed and sintered at 800 °C for 2 h.

The $Li_{0.2}Ni_{0.7}Cu_{0.1}O$ catalyst was prepared by a sol-gel reaction. A stoichiometric amount of Li_2CO_3 (99.99%, Sigma–Aldrich), CuCO₃·Cu(OH)₂ (95%, Sigma–Aldrich) and NiCO₃·2Ni(OH)₂·4H₂O (~46% Ni basis, Sigma–Aldrich) were mixed and dissolved in deionized water to form a 1.0 M solution. Then the solution was added with citric acid (99.5%, Sigma–Aldrich) in a molar ratio of total metal cation ion: citric acid=1:2 and stirred vigorously to obtain a homogeneous solution. The obtained solution was heated with continuous stirring at 100 °C for 2 h to form a glassy sol. Finally, the obtained sol was sintered in air at 800 °C for 2 h resulting in the $Li_{0.2}Ni_{0.7}Cu_{0.1}O$ catalyst.

Equal volume of NSDC powder and $Li_{0.2}Ni_{0.7}Cu_{0.1}O$ catalyst powder were first mixed and ground to prepare anode and cathode materials. NSDC was used as the electrolyte material. The cathode, electrolyte and anode were uniaxially pressed into a cylindrical pellet by a hot co-pressed process at 600 °C under 100 MPa. The pellets had diameter of 20 mm and thickness of 1 mm. Finally, both anode and cathode surface were covered with silver mesh as current collectors for fuel cell performance measurements..

Evaluation of cell performance and catalyst

Supplementary Material (ESI) for Energy & Environmental Science This journal is (c) The Royal Society of Chemistry 2011

A single fuel cell with the active area of 2 cm² was assembled to evaluate the cell performance of the biofuel used in the low temperature solid oxide fuel cell. The solutions of the feed biofuel (market-bioethanol, 56 wt.%, Beijing Redstar Co., Ltd.; glycerol, 85 wt.%, Apoteket Produktion & Laboratorier AB) in deionized water with a mass concentration of 50 wt.% were used as the fuels. The cell tests were carried out under a fuel solution flow rate of 1.0 mL min⁻¹, a reforming gas flow rate of 100 mL min⁻¹ and a dry air flow rate of 100 mL min⁻¹ under 1 atm pressure. The temperature of the reforming reactor is 600 °C and the operation temperature of the fuel cell is 580 °C. The electrochemical performance of the fuel cell was measured by a computerized instrument (L-43). The crystal structure of catalyst was identified by X-ray diffraction with Rigaku-D/Max-3A diffractometer using Cu K α radiation ($\lambda = 1.5406$ Å). The surface of anode before and after operating was investigated by a Zeiss Ultra 55 field-emission scanning electron microscope combined with an energy-dispersive X-ray spectroscopy.

Thermodynamic parameters for calculation of theoretical open circuit voltage (OCV)

Reactions:

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \quad (overall) \tag{1}$$

$$C_{3}H_{8}O_{3} + \frac{7}{2}O_{2} \rightarrow 3CO_{2} + 4H_{2}O \text{ (overall)}$$
 (2)

Tab. S1 Thermodynamic parameters for calculation of theoretical open circuit voltage (OCV).

Compounds	$C_2H_5OH(l)$	$C_{3}H_{8}O_{3}(l)$	$O_2(g)$	$CO_2(g)$	$H_2O(l)$
$\Delta_{\rm f} G^0({\rm kJ\ mol}^{-1})$	-174.8	-476.5	0	-394.4	-237.1
$S^0(J \text{ K}^{-1} \text{mol}^{-1})$	160.7	206.3	205.1	213.8	70

* Data from CRC Handbook of Chemistry and Physics and Lange's Handbook of Chemistry

According to the Nernst equation,

$$E = \frac{\Delta G^0}{nF} \tag{3}$$

Where the ΔG^0 is the Gibbs free energy change of the reaction, *n* is the number of electronic of the reaction, *F* is Faraday constant (96485 C mol⁻¹). Therefore, the OCV of reaction 1 and reaction 2 can be calculated as follows,

OCV _{ethanol} =
$$-\frac{(3 \times 237.1 + 2 \times 394.4 - 174.8) \times 1000}{12 \times 96485} = 1.14 \text{ V}$$

OCV_{glycerol} = $-\frac{(4 \times 237.1 + 3 \times 394.4 - 476.5) \times 1000}{14 \times 96485} = 1.22 \text{ V}$

Supplementary Material (ESI) for Energy & Environmental Science This journal is (c) The Royal Society of Chemistry 2011

According to the relationship between the theoretical OCV and temperature,

$$E_T = E^0 + \frac{\Delta s}{nF} \left(T - T_0 \right) \tag{4}$$

where E_T is the theoretical potential for the cell at the temperature of T, E^0 is the theoretical standard potential of the cell, $\Delta \hat{s}$ is the entropy change of the reaction.

When estimating the E_T , the $\Delta \hat{s}$ is usually assumed to be equal to $\Delta \hat{s}^0$. Therefore, the OCV of reaction 1 and reaction 2 at the operation temperature of 580 °C can be calculated as follows,

$$OCV_{ethanol} (580 °C) = 1.14 + \frac{-138.4}{12 \times 96485} (853.15 - 298.15) = 1.074 V$$
$$OCV_{glycerol} (580 °C) = 1.22 + \frac{-2.75}{14 \times 96485} (853.15 - 298.15) = 1.219 V$$