Supplementary Information for Hill et al.

High surface area templated LiFePO₄ from a single source precursor molecule

Matthew R. Hill, Gregory J. Wilson, Laure Bourgeois and Anthony G. Pandolfo

Figure S1. Mass spectrum of the single source precursor **LFP-S**. Theoretical splitting pattern (inset), observed splitting pattern (bottom).

Following the successful preparation of a mesoporous LiFePO₄ / C composite as confirmed from TEM, the potential cathode material was distributed amongst a conductive carbon matrix to prepare the electrode. SEM (**Figure S2**) illustrates the uniform distribution of LiFePO₄ throughout the carbon matrix. LiFePO₄ particles (bright regions in SEM micrographs) are 0.5-5 μ m in diameter within a thin film of 10 μ m uniform thickness.

Figure S2. Typical SEM images of LiFePO₄ sample **3** as cast as an electrode. Secondary emission (top) and backscattered electron image (middle) of the same region; an ultramicrotomed cross-section of an electrode coating made from LiFePO₄ sample **3** (bottom) shows secondary emission overlayed with backscattered electron image of the same region. Bright regions are indicative of LiFePO₄.

Figure S3. Transient cyclic voltammogram expressed as specific current (mA g^{-1}) in a twoelectrode CR 2032 coin cell for Sample 1 as working electrode, with 1M LiPF₆ (50:50 w/w EC:DMC) electrolyte and Li-metal anode as secondary electrode.