**Supporting Information** 

# Photochemical water oxidation with visible light using a cobalt containing catalyst

Denys Shevchenko, Magnus F. Anderlund, Anders Thapper,\* and Stenbjörn Styring\*

Dept. of Photochemistry and Molecular Science, Uppsala University, P.O. Box 523, S-75120, Uppsala, Sweden.

## **Detailed Methods**

#### General

The ligand M2P was prepared from the tetraisoprolyl ester of methylenediphosphonic acid (Aldrich) by a literature procedure.<sup>1</sup> M2P forms a complex with cobalt(II) (K = 12.03).<sup>2</sup> The ligand has been used in a 1.4 times excess to ascertain that the amount of cobalt(II) that is not bound to M2P (for example as  $Co_3(PO_4)_2$ ) is kept at a very low level. Using known stability constant and the following parameters:  $[Co^{2+}] = 20 \ \mu\text{M}$ ,  $[M2P] = 28 \ \mu\text{M}$ ,  $[PO_4^{3-}] = 50 \ \text{mM}$ , pH 7, it was calculated that ~99.3% of the cobalt is present as CoM2P, ~0.7% as Co(M2P)<sub>2</sub> and <0.001% as  $Co_3(PO_4)_2$  (Fig. S1).  $[Ru^{III}(bpy)_3](CIO_4)_3$  was prepared according to literature,<sup>3</sup>  $[Ru^{II}(bpy)_3](CIO_4)_2$  was prepared by anion exchange form  $[Ru^{II}(bpy)_3]Cl_2$  (Aldrich) and recrystallized from MeCN/Et<sub>2</sub>O. Co(CIO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (Aldrich) and Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (Aldrich) were bought and used as received. The program Hyperquad Simulation and Speciation from Protonic Software was used to calculations the distribution of Co species in the presence of M2P.

#### Oxygen evolution measurements

The oxygen evolution was followed using a standard Clark-type oxygraph electrode (Hansatech Instruments), separated from the sample solution by a Teflon membrane. The signal was recorded for the entire duration of the experiment at 0.1 sec intervals using the Oxygraph+ software (Hansatech Instruments). The maximum turnover frequency (TOF<sub>max</sub>) was determined at the steepest slope of the oxygen evolution curve. The signal was calibrated using air saturated aqueous solutions ( $[O_2] = 276 \mu M$ , T = 20 °C).<sup>4</sup> In a standard procedure, the desired amount of catalyst (Co(ClO<sub>4</sub>)<sub>2</sub> + M2P) was mixed and added to a buffer solution at pH 7. To this solution Ru<sup>II</sup>(bpy)<sub>3</sub>(ClO<sub>4</sub>)<sub>2</sub> and Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> dissolved in water was added in the dark and the reaction mixture (1 mL) was transferred to the Clark cell and de-aerated using Argon. When sufficiently low O<sub>2</sub> concentrations were reached (~10  $\mu$ M O<sub>2</sub>) the Argon was removed and the cell was closed. The cell was left in the dark for about 15 s to ensure that the oxygen level was constant where after the light was turned on.

The chemical oxidation was done by mixing the catalyst  $(Co(ClO_4)_2 + M2P)$  in a buffered solution at pH 7 that was transferred to the Clark cell and de-aerated. 350 µL of a concentrated aqueous solution of de-aerated Ru<sup>III</sup>(bpy)<sub>3</sub>(ClO<sub>4</sub>)<sub>3</sub> was added. *Light scattering*.

The light source for the scattering experiments was a Uniphase He-Ne laser emitting vertically polarized light at a wavelength of 632.8 nm and operating at 25 mW. Data was collected at 25 °C with the scattering angle set to 90 degrees, using a Perkin Elmer diode detector (Perkin Elmer, Quebec, Canada) and connected to an ALV5000 multiple digital autocorrelator (ALV-Laser Vertriebgesellschaft mbH, Germany). The data was acquired and evaluated using the ALV Correlator software v3.0.

# Electrochemistry.

Cyclic voltammetry and differential pulse voltammetry were carried out using an Autolab potentiostat with a GPES electrochemical interface (Eco Chemie). Cyclic voltammograms were recorded at a scan rate of 100 mV s<sup>-1</sup>. Differential pulse voltammetry was performed with a scan rate of 20 mV s<sup>-1</sup>, a pulse height of 75 mV and duration of 40 ms. The electrolyte was 50 mM potassium phosphate at pH 7.0. The working electrode was a glassy carbon disc (diameter 3 mm). The surface of the electrode was routinely polished with an alumina(0.05 mm)-water slurry on a felt surface, immediately prior to use. A glassy carbon rod served as counter electrode and as reference electrode an Ag/AgCl electrode with a potential of 0.197 V vs. the NHE was used. The counter and reference electrodes were in compartments separated from the bulk solution by fritted disks.

## Isolation of a solid Co/M2P material.

Co(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (183 mg, 0.5 mmol), H<sub>4</sub>M2P (88 mg, 0.5 mmol) and [Ru(bpy)<sub>3</sub>](ClO<sub>4</sub>)<sub>2</sub> (100 mg, 0.13 mmol) were dissolved in 150 ml of water. The pH was adjusted to 7.0 by addition of a KOH solution (0.1 M). After that, Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (476 mg, 2.0 mmol) in 10 ml of deionized water was added and the solution was illuminated using a 500 Watt tungsten lamp. The pH was kept in the 6.9-7.1 range by continuous injection of a KOH solution (0.1 M). The illumination was stopped when pH ceased to decrease which took approximately 20 min (~40 ml of KOH solution). After the illumination 200 ml of acetone was added and the resulted suspension was centrifuged for 5 min at 5000 rpm. The supernatant was discharged and pellets were ultrasonicated with 50 ml of acetone. Centrifugation of the acetone suspension gave a dark-green material that was dried on air yielding 90 mg of material. Elemental analysis: C, 2.57%; Co, 27.22%; H, 2. 94%; P, 12.84% corresponding the approximate composition (of these four elements) C<sub>x</sub>H<sub>14x</sub>P<sub>2.0x</sub>Co<sub>2.2x</sub> and to a Co/M2P ratio of 2.2/1.

## The photosensitizer/electron acceptor system.

The light-induced reaction starts with that  $\text{Ru}(\text{bpy})_3^{2^+}$  is excited by the light to form  $\text{Ru}(\text{bpy})_3^{2^{+*}}$  (eq. S1) which sends an electron to  $\text{S}_2\text{O}_8^{2^-}$  and gives  $\text{Ru}(\text{bpy})_3^{3^+}$ ,  $\text{SO}_4^{2^-}$  and  $\text{SO}_4^{--}$  (eq. S2).

$$\operatorname{Ru}(\operatorname{bpy})_{3}^{2+} \xrightarrow{hv} \operatorname{Ru}(\operatorname{bpy})_{3}^{2+*}$$
 (S1)

$$\operatorname{Ru}(\operatorname{bpy})_{3}^{2^{+*}} + \operatorname{S}_{2}\operatorname{O}_{8}^{2^{-}} \longrightarrow \operatorname{Ru}(\operatorname{bpy})_{3}^{3^{+}} + \operatorname{SO}_{4}^{2^{-}} + \operatorname{SO}_{4}^{2^{-}} + \operatorname{SO}_{4}^{2^{-}}$$
(S2)

The oxidized  $\text{Ru(bpy)}_3^{3^+}$  can now oxidize the Co/M2P catalyst one step and returns to  $\text{Ru(bpy)}_3^{2^+}$  (eq. S3).

$$\operatorname{Ru}(\operatorname{bpy})_{3}^{3+} + \operatorname{Co}/\operatorname{M2P}^{n} \longrightarrow \operatorname{Ru}(\operatorname{bpy})_{3}^{2+} + \operatorname{Co}/\operatorname{M2P}^{n+1}$$
(S3)

The sulfate radical formed in eq. S2 is strongly oxidizing and will oxidize  $Ru(bpy)_3^{2+}$  (eq. S4). If the  $Ru(bpy)_3^{2+}$  is present in a higher concentration than any cobalt containing species this will be the most likely reaction.

$$Ru(bpy)_{3}^{2^{+}} + SO_{4}^{-} \longrightarrow Ru(bpy)_{3}^{3^{+}} + SO_{4}^{2^{-}}$$
 (S4)

The  $Ru(bpy)_3^{3+}$  formed in eq. S4 will react according to eq. S3 to give the  $Ru(bpy)_3^{2+}$  and oxidized catalyst.

In this manner each persulfate molecule will accept two electrons and allow for two oxidation steps on the catalyst.



**Fig. S1.** Distribution of cobalt species as a function of  $[M2P]/[Co]_{total}$ . Co(M2P)<sup>2-</sup> (pink),  $\{Co(M2P)_2\}^{6-}$  (green) and  $Co_3(PO_4)_2$  (black). The arrows indicate a  $[M2P]/[Co]_{total}$  ratio of 1.4, this condition was used in all the experiments described unless otherwise stated. Parameters used for the calculation:  $[Co]_{total} = 20 \ \mu\text{M}$ ,  $[M2P] = 10-60 \ \mu\text{M}$ ,  $[PO_4^{3-}]_{total} = 50 \ \text{mM}$ , pH 7.0.<sup>2</sup>



**Fig. S2.** Chemical oxidation of water in phosphate buffer with Co/M2P (10  $\mu$ M Co<sup>2+</sup>, 14  $\mu$ M M2P, 2000  $\mu$ M Ru(bpy)<sub>3</sub><sup>3+</sup>, 20 mM phosphate buffer, pH 7.0). The [Ru(bpy)<sub>3</sub>]<sup>3+</sup> was added at t = 0. Due to the large volume of [Ru(bpy)<sub>3</sub>]<sup>3+</sup> added (200  $\mu$ l) addition took ~1.5 s, explaining the initial slow rise of the O<sub>2</sub> evolution. The oxygen evolution started directly after the addition.



**Fig S3.** Following photochemical  $\text{Ru}(\text{bpy})_3^{3^+}$  formation (full line) and oxygen evolution (dashed line) with the Co/M2P system. An argon-flushed mixture containing Co<sup>2+</sup> (20 µM), M2P (28 µM), Ru(bpy)\_3^{2^+} (100 µM), and S\_2O\_8^{2^-} (2 mM) in phosphate buffer (50 mM, pH 7) was kept in the dark in a UV-vis cell or Clark cell. Visible light illumination (LEDs,  $\lambda = 470\pm10$  nm, ~280 µE) was applied at the down arrows and stopped at the up arrows. The Clark cell was thermostated at 20 °C.



**Fig. S4.** a) Differential pulse and b) cyclic voltammagrams of pure 50 mM KH<sub>2</sub>PO<sub>4</sub>/K<sub>2</sub>HPO<sub>4</sub> electrolyte at pH 7.0 (black), electrolyte containing 1 mM Co<sup>2+</sup> (blue) and electrolyte containing 1 mM Co<sup>2+</sup> and 1.4 mM M2P (red). The potential was measured against a Ag/AgCl reference electrode and converted to NHE potentials by using E(NHE) = E(Ag/AgCl) + 0.197 V.



**Fig. S5.** Light oxidation in phosphate buffer with a) Co/M2P (100  $\mu$ M Co<sup>2+</sup>, 140  $\mu$ M M2P, 250  $\mu$ M Ru(bpy)<sub>3</sub><sup>2+</sup> 4 mM S<sub>2</sub>O<sub>8</sub><sup>2-</sup>, 50 mM phosphate buffer, pH 7) and b) Co<sup>2+</sup> alone (100  $\mu$ M Co<sup>2+</sup>, 250  $\mu$ M Ru(bpy)<sub>3</sub><sup>2+</sup> 4 mM S<sub>2</sub>O<sub>8</sub><sup>2-</sup>, 50 mM phosphate buffer, pH 7.0). The samples were illuminated for 20 s (solid black line, light applied at t = 0 s) after which the light was turned off. When the oxygen evolution had stopped the solution was centrifuged (14000 rpm, 15 min) and the supernatant returned to the cell and a second illumination started (dashed red line). The results are reported in Table 1, runs **8** (a) and **9** (b).

Supplementary Material (ESI) for Energy & Environmental Science This journal is © Royal Society of Chemistry 2011



**Fig. S6.** Light oxidation in cacodylate buffer with a) Co/M2P (100  $\mu$ M Co<sup>2+</sup>, 140  $\mu$ M M2P, 250  $\mu$ M Ru(bpy)<sub>3</sub><sup>2+</sup> 4 mM S<sub>2</sub>O<sub>8</sub><sup>2-</sup>, 5 mM cacodylate buffer, pH 7) and b) Co<sup>2+</sup> alone (100  $\mu$ M Co<sup>2+</sup>, 250  $\mu$ M Ru(bpy)<sub>3</sub><sup>2+</sup> 4 mM S<sub>2</sub>O<sub>8</sub><sup>2-</sup>, 5 mM cacodylate buffer, pH 7.0). The samples were illuminated for 20 s (solid black line, Table S2, run **S4** and **S5** for a) and b) respectively, light applied at t = 0 s) after which the light was turned off. When the oxygen evolution had stopped the solution was centrifuged and the supernatant returned to the cell and a second light cycle started (dashed red line, Table S2, run **S6** and **S7** for a) and b) respectively).

**Table S1.** Maximum turnover frequencies (TOF<sub>max</sub>) of oxygen evolution for the Co/M2P catalyst in different buffers at pH 7.0.

| Conditions <sup>a</sup> |       |                                 | $TOF_{max} (s^{-1})$ | TON |
|-------------------------|-------|---------------------------------|----------------------|-----|
| Run                     | [M2P] | Buffer                          |                      |     |
|                         | (µM)  |                                 |                      |     |
| 2                       | 14    | Phosphate, 20 mM                | 0.26±0.01            | 20  |
| <b>S1</b>               | 14    | Cacodylate, $10 \text{ mM}^{b}$ | 0.24±0.01            | 13  |
| <b>S2</b>               | 14    | No buffer                       | 0                    | 0   |
| <b>S</b> 3              | 1000  | $K_3HM2P/K_2H_2M2P$ , 1 mM      | $0.09\pm0.01$        | 2   |

<sup>*a*</sup> Using visible light ( $\lambda = 470\pm10$  nm), [Co<sup>2+</sup>] = 20  $\mu$ M, [Ru(bpy)<sub>3</sub><sup>2+</sup>] = 100  $\mu$ M, [S<sub>2</sub>O<sub>8</sub><sup>2-</sup>] = 2 mM for all experiments. <sup>*b*</sup> NaAsO<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>/HNO<sub>3</sub>.

Table S2. Maximum turnover frequencies  $(TOF_{max})$  of oxygen evolution in cacodylate buffered systems.

| Run       | [M2P] | $TOF_{max} (s^{-1})$  |
|-----------|-------|-----------------------|
|           | (µM)  |                       |
| S4        | 140   | $0.08{\pm}0.01^{a}$   |
| S5        | 0     | $0.08{\pm}0.01^{a}$   |
| <b>S6</b> | 140   | $0.03{\pm}0.01^{b}$   |
| <b>S7</b> | 0     | $0.002 \pm 0.001^{b}$ |

Performed in a NaAsO<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>/HNO<sub>3</sub> buffer, 5 mM, pH 7.0 using visible light ( $\lambda = 470\pm10$  nm),  $[Co^{2+}] = 100 \ \mu\text{M}$ ,  $[Ru(bpy)_3]^{2+} = 250 \ \mu\text{M}$ ,  $[S_2O_8]^{2-} = 4 \ \text{mM}$  for all experiments. <sup>*a*</sup> 20 s of light applied. <sup>*b*</sup> Second illumination of the sample after 15 min centrifugation.

# References

- 1 S. Mohamady and D. L. Jakeman, J. Org. Chem., 2005, 70, 10588-10591.
- 2 Academic Software, 2001.
- 3 V. Y. Shafirovich, N. K. Khannanov and A. E. Shilov, *J. Inorg. Biochem.*, 1981, **15**, 113-129.
- 4 G. A. Truesdale and A. L. Downing, *Nature*, 1954, **173**, 1236-1236.