Supporting information for

Atomic-scale investigation on lithium storage mechanism in TiNb₂O₇

Xia Lu,^a Zelang Jian,^{a,b} Zheng Fang,^a Lin Gu,^{*a,c} Yong-Sheng Hu,^{*a} Wen Chen,^b Zhaoxiang Wang,^a

5 Liquan Chen^a

^a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

^b School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China; ^c WPI advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

10

Figure S1 Narrow-scan XPS spectra of (a) Nb 3d, (b) Ti 2p in TiNb₂O₇. It shows that the chemical states of Nb and Ti are + 5 and + 4 in the pure TiNb₂O₇ sample, respectively.

20

Figure S2 The naked white electrode turned into a black electrode after Li insertion.

5 Figure S3: The HAADF (left) and ABF (right) images of TiNb₂O₇ at [$\overline{1}10$] zone axis (Up); the HAADF (left) and ABF (right) images of TiNb₂O₇ at [010] zone axis (Down).

10

Figure S4: The HAADF (left) and ABF (right) images of TiNb₂O₇ discharged to 1.0 V at [$\overline{110}$] zone axis (Up); the HAADF (left) and ABF (right) images of TiNb₂O₇ discharged to 1.0 V at [010] zone axis (Down).

5

Figure S5: The HAADF (left) and ABF (right) images of TiNb₂O₇ charged to 3.0 V at [110] zone axis (Up); the HAADF (left) and ABF (right) images of TiNb₂O₇ charged to 3.0 V at [010] zone axis (Up)

Figure S6: The (110) (left) and (001) (right) plane charge density of TiNb₂O₇.

10