Supporting Information

The supporting information contains hydration energy profiles, the results of which are referred to in the manuscript, The hydration energy profiles are for clay-molecular cation systems: $NH_2PPG_3^+NH_3^+$, $^+NH_3^-PPG_9^-NH_3^+$, $NH_2^-PEG_3^-NH_3^+$, $NH_2^-PMG_3^-NH_3^+$ and the quaternary amine $^+(CH_3)_3^-PPG_3^ (CH_3)_3^+$. See figure captions in the supporting information for additional information about the hydration energy profiles of these cations.

Figure 1: *d*-spacings and discrete hydration energies of montmorillonite with NH_2 -PPG₃- NH_3^+ resident in the interlayer. The reference states used in eq. 2 are indicated by the grey solid vertical lines. As we assume complete cation exchange, there are twice as many organic molecules in the interlayer than for the montmorillonite- $^+NH_3$ -PPG₃- NH_3^+ system, and approximately the same organic mass in the interlayer as for NH_2 -PPG₆- NH_3^+ . The hydration energies are very similar to that of $^+NH_3$ -PPG₆- NH_3^+ , indicating that the amount of organic PPG backbone for the diamine molecules in the interlayer is important.

Figure 2: *d*-spacings and discrete hydration energies of montmorillonite with NH_2 -PPG₃- NH_3^+ resident in the interlayer (red) and the quaternary amine equivalent, $^+(CH_3)_3$ -PPG₃- $(CH_3)_3^+$ (black). The reference states used in eq. 2 are indicated by the grey solid vertical lines. We see that for the same backbone, the additional layer spacing due to the extra methyl groups cause a decrease in swelling inhibitor performance.

Figure 3: *d*-spacings and discrete hydration energies of montmorillonite with NH_2 -PEG₃- NH_3^+ resident in the interlayer (black), NH_2 -PPG₃- NH_3^+ (red) and NH_2 -PMG₃- NH_3^+ (blue). The reference states used in eq. 2 are indicated by the grey solid vertical lines. The increase in hydrophobicity of the backbone increases the swelling inhibition but at progressively higher water contents.