Supporting Information

for

Photoinitiated Multistep Charge Separation in Ferrocene-Zinc Porphyrin-

Diiron Hydrogenase Model Complex Triads

Premaladha Poddutoori, Dick T. Co, Amanda P. S. Samuel, Chul Hoon Kim, Michael T.

Vagnini, and Michael R. Wasielewski*

Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center Northwestern University, Evanston, IL 60208-3113

E-mail: m-wasielewski@northwestern.edu

General

All commercial compounds were purchased from Sigma-Aldrich and used without further purification. Solvents were ACS reagent grade, unless otherwise specified. Toluene, methylene chloride (CH₂Cl₂), tetrahydrofuran (THF) and *N*,*N*-dimethylformamide (DMF) were dried using a Glass Contour solvent system. All reactions were performed in air-free conditions under nitrogen. Column chromatography was performed on standard silica gel, 60 angstrom, 32-63 µm (Sorbent Technologies). ¹H and ¹³C nuclear magnetic resonance spectra were recorded on a Bruker Avance III using TMS as an internal standard. Laser desorption mass spectra were recorded on a Bruker Daltonics AutoFlex III MALDI-TOF, and high resolution electrospray ionization (HR-ESI) mass spectra were recorded on an Agilent 6210 LC-TOF. Characterization studies were performed at the Integrated Molecular Structure Education and Research Center (IMSERC) at Northwestern University.

Synthesis

Starting materials 1,8-naphthalic anhydride-4,5-disulfide $(NMAS_2)$,¹ 5-(*p*-aminophenyl)-10,15,20-triphenylporphyrin (TPP-NH₂),²⁻⁴ 5-phenyldipyrromethane⁵ and 4-iodophenyferrocene (Fc-Ph-I)⁶ were synthesized according to reported methods.

ZnTPP-NMIS₂:

NMAS₂¹ (0.056 g, 0.22 mmol), TPP-NH₂ (0.880 g, 0.14 mmol), Zn(OAc)₂·2H₂O (0.107 g, 0.49 mmol) and 40 mL of pyridine were added to a 100 mL round bottom flask and refluxed under N₂ for 72 hours. The solvent was removed by rotary evaporation and column chromatography was performed using CH₂Cl₂ as the eluent to provide ZnTPP-NMIS₂ in a 65% yield (0.085 g, 0.09 mmol). ¹H NMR δ (CDCl₃): 9.08 (d, *J* = 4.5 Hz, 2H), 8.92 (d, *J* = 4.5 Hz, 2H), 8.90 (s, 4H), 8.54 (d, *J* = 8.0 Hz, 2H), 8.39 (d, *J* = 8.0 Hz, 2H), 8.22 (d, *J* = 6.4 Hz, 6H), 7.75 (m, 9H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H). MS (MALDI+): *m/z* 933.364 [M⁺], Calcd. 933.121 for C₅₆H₃₁N₅O₂S₂Zn.

ZnTPP-[NMI-Fe^I-Fe^I-S₂(CO)₆] (dyad 3):

ZnTPP-NMIS₂ (0.050 g, 0.05 mmol) was added to a 100 ml round bottom flask with 60 ml of THF. Fe₃(CO)₁₂ (0.035 g, 0.07 mmol) was added to the flask and the reaction was refluxed for 2 hours. The solvent was removed by rotary evaporation and column chromatography was performed using CH₂Cl₂ as the eluent to provide ZnTPP-[NMI-Fe¹-Fe¹-S₂(CO)₆] in a 45% yield (0.029 g, 0.02 mmol). ¹H NMR δ (CDCl₃): 9.09 (d, *J* = 4.7 Hz, 2H), 8.98 (d, *J* = 4.7 Hz, 2H), 8.96 (s, 4H), 8.61 (d, *J* = 7.6 Hz, 2H), 8.54 (d, *J* = 7.6 Hz, 2H), 8.40 (d, *J* = 8.1 Hz, 2H), 8.23 (m, 6H), 7.78 (m, 9H), 7.68 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (125 MHz, δ CDCl₃): 206.74, 163.67, 150.25, 150.03, 143.50, 142.76, 135.64, 135.24, 134.48, 134.15, 133.23, 132.22, 132.07, 130.19, 129.71, 129.06, 128.25, 127.56, 126.77, 126.61, 126.58, 126.13, 125.31, 125.17,121.36, 121.29, 119.79, 66.30. ESI-HRMS: *m/z* 1219.9604 [M+H]⁺, Calcd. 1219.0074 for C₆₂H₃₇Fe₂N₂O₈S₂Zn. **Fc-Ph-CHO:**

p-Bromobenzaldehyde (0.518 g, 2.80 mmol) was added to a 100 ml round bottom flask with 50 ml of toluene. Sodium carbonate (4.759 g, 44.90 mmol), bis(triphenylphosphine)palladium(II)

dichloride (0.060 g, 0.085 mmol) and ferroceneboronic acid (0.837 g, 3.64 mmol) were added and the reaction mixture was heated at 90 °C under N₂ for 16 hours. The solvent was removed by rotary evaporation and Fc-Ph-CHO (0.792 g, 2.73 mmol) was obtained in a 75% yield after column chromatography using CH₂Cl₂ as the eluent. ¹H NMR δ (CDCl₃): 9.97 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.60 (d, *J* = 8.2 Hz, 2H), 4.74 (s, 2H), 4.44 (s, 2H), 4.05 (s, 5H). ESI-HRMS: *m/z* 290.040 [M+H]⁺, Calcd. 290.039 for C₁₇H₁₄FeO.

Fc-TPP and Fc-TPP-NO₂:

5-Phenyldipyrromethane (2.22 g, 10.0 mmol), Fc-Ph-CHO (1.450 g, 5.00 mmol), 4nitrobenzaldehyde (0.755 g, 5.00 mmol) and 1000 ml of CH₂Cl₂ were added to a 2000 ml round bottom flask. Trifluoroacetic acid (1.37 ml, 17.80 mmol) was added slowly over 30 s. The reaction mixture was stirred at room temperature for 30 min. *N*,*N*-Diisopropylethylamine (3.00 ml, 18.00 mmol) was added followed by a solution of *p*-chloranil (3.700 g, 15.00 mmol) in THF (200 ml). The mixture was stirred at room temperature for an additional 6 hours. The solvent was removed by rotary evaporation and column chromatography using 50/50 (*v*/*v*) hexanes/CH₂Cl₂ as the eluent provided Fc-TPP (0.030 g, 0.07 mmol) in 2% yield. Fc-TPP-NO₂ (0.200 g, 0.07 mmol) was obtained using 30/70 (*v*/*v*) hexanes/CH₂Cl₂ as the eluent in 8% yield (overall yield). Fc-TPP: ¹H NMR δ (CDCl₃): 8.94 (d, *J* = 4.6 Hz, 2H), 8.87 (d, *J* = 4.6 Hz, 2H), 8.85 (s, 4H), 8.23 (m,

6H), 8.14 (d, J = 8.1 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.77 (m, 9H), 4.92 (t, 2H), 4.48 (t, 2H), 4.25 (s, 5H), -2.75 (s, 2H). MS (MALDI+): m/z 799.095 [M⁺], Calcd. 798.244 for C₅₄H₃₈FeN₄. Fc-TPP-NO₂ ¹H NMR δ (CDCl₃): 9.02-8.70 (m, 8H), 8.64 (d, J = 8.2 Hz, 2H), 8.41 (dd, J = 2.7and 5.8 Hz, 2H), 8.23 (d, J = 6.4 Hz, 4H), 8.13 (d, J = 7.0 Hz, 2H), 7.86 (d, J = 7.7 Hz, 2H), 7.77 (m, 6H), 4.92 (s, 2H), 4.48 (s, 2H), 4.24 (s, 5H), -2.75 (s, 2H). MS (MALDI+): m/z 844.274 [M⁺], Calcd. 843.229 for C₅₄H₃₇FeN₅O₂.

Fc-ZnTPP (dyad 4):

Fc-TPP (0.03 g, 0.04 mmol) and CHCl₃ (50 ml) were added to a 100 ml round bottom flask. Zn(OAc)₂:2H₂O (0.041 g, 0.19 mmol) dissolved in MeOH (15 ml) was added and the reaction was stirred for 2 hours. The reaction mixture was then washed with water and dried over sodium sulfate. Column chromatography using 30/70 (ν/ν) hexanes/CH₂Cl₂ as the eluent gave Fc-ZnTPP. (0.027 g, 0.03 mmol) in a 85% yield. ¹H NMR δ (CDCl₃): 9.04 (d, J = 4.6 Hz, 2H), 8.97 (d, J = 4.6 Hz, 2H), 8.95 (s, 4H), 8.23 (d, J = 7.6 Hz, 6H), 8.15 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 7.9 Hz, 2H), 7.76 (m, 9H), 4.93 (s, 2H), 4.48 (s, 2H), 4.25 (s, 5H). MS (MALDI+): *m/z* 860.609 [M⁺], Calcd. 860.158 for C₅₄H₃₆FeN₄Zn.

Fc-TPP-NH₂:

Fc-TPP-NO₂ (0.330 g, 0.39 mmol), concentrated HCl (20 mL) and SnCl₂·2H₂O (0.680 g, 3.00 mmol) were added to a 100 ml round bottom flask. The reaction was stirred at room temperature for 45 min and then heated at 65 °C for 30 min. The solution was cooled in ice and concentrated ammonia was added to neutralize the acid. Chloroform (500 mL) was added and the mixture was stirred for 1 hour. The layers were separated and the organic layer was washed twice with H₂O. The organic layer was dried over sodium sulfate and the solvent was removed by rotary evaporation. Fc-TPP-NH₂ (0.187 g, 0.23 mmol) was obtained in 65% yield after column chromatography using CH₂Cl₂ as the eluent. ¹H NMR δ (CDCl₃): 9.00-8.80 (m, 8H), 8.21 (d, *J* = 7.0 Hz, 2H), 8.13 (d, *J* = 7.8 Hz, 4H), 8.00 (d, *J* = 8.1 Hz, 6H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.75 (m, 2H), 7.07 (d, *J* = 8.0 Hz, 9H), 4.92 (s, 2H), 4.47 (s, 2H), 4.24 (d, *J* = 2.6 Hz, 5H), 4.04 (bs, 2H), -2.75 (s, 2H). MS (MALDI+): *m/z* 814.307 [M⁺], Calcd. 813.255 for C₅₄H₃₉FeN₅.

Fc-ZnTPP-NMIS₂:

NMAS₂¹ (0.072 g, 0.26 mmol), Fc-TPP-NH₂ (0.150 g, 0.18 mmol), Zn(OAc)₂·2H₂O (0.141 g, 0.64 mmol) and 40 mL of pyridine were added to a 100 ml round bottom flask and refluxed under N₂ for 72 hours. The solvent was removed by rotary evaporation and column chromatography was performed using CH₂Cl₂ as the eluent to provide Fc-ZnTPP-NMIS₂ in a 65% yield (0.134 g, 0.120 mmol). ¹H NMR δ (CDCl₃): 9.20-8.90 (m, 8H), 8.49 (m, 2H), 8.40 (d, J = 7.7 Hz, 2H), 8.25 (d, J = 6.0 Hz, 4H), 8.15 (m, 2H), 7.90-7.72 (m, 8H), 7.67 (d, J = 7.9 Hz, 2H), 7.45 (m, 2H), 4.91 (s, 2H), 4.46 (s, 2H), 4.24 (s, 5H). MS (MALDI+): *m/z* 1117.154 [M⁺], Calcd. 1117.118 for C₆₆H₃₉FeN₅O₂S₂Zn.

Fc-ZnTPP-[NMI-Fe^I-Fe^I-S₂(CO)₆] (triad 1):

Fc-ZnTPP-NMIS₂ (0.100 g, 0.09 mmol) was added to a 100 ml round bottom flask with 60 ml of THF. Fe₃(CO)₁₂ (0.059 g, 0.12 mmol) was added to the flask and the reaction was refluxed for 2 hours. The solvent was removed by rotary evaporation and Fc-ZnTPP-[NMI-Fe¹-Fe¹-S₂(CO)₆] (0.056 g, 0.040 mmol) was obtained in a 45% yield after column chromatography using CH₂Cl₂ as the eluent. ¹H NMR δ (CDCl₃): 9.13-8.95 (m, 8H), 8.60 (dd, *J* = 2.2 and 5.2 Hz, 2H), 8.55 (dd, *J* = 2.3 and 5.2 Hz, 2H), 8.39 (d, *J* = 8.1 Hz, 2H), 8.25 (d, *J* = 6.3, 4H), 8.14 (m, 2H), 7.86-7.72 (m, 8H), 7.64 (d, *J* = 8.0 Hz, 2H), 4.89 (d, *J* = 5.6 Hz, 2H), 4.45 (s, 2H), 4.23 (d, *J* = 5.6 Hz, 5H). ¹³C NMR (125 MHz, δ CDCl₃): 205.77, 162.56, 149.22, 142.43, 141.71, 139.24, 137.56, 134.56, 134.20, 133.56, 133.41, 135.05, 132.21, 131.18, 131.07, 129.15, 128.67, 126.50, 125.68,

125.60, 125.06, 124.16, 123.20, 120.25, 118.69, 84.01, 68.81, 68.27, 65.75, 52.46. ESI-HRMS: *m/z* 1403.9567 [M+H]⁺, Calcd. 1403.0049 for C₇₂H₄₅Fe₃N₅O₈S₂Zn.

Fc-Ph₂-CHO:

4-Formylbenzeneboronic acid (1.770 g, 11.80 mmol), Fc-Ph-I (2.250 g, 5.80 mmol), Ba(OH)₂ (2.586 g, 8.20 mmol) and palladium(II)acetate (0.440 g, 1.96 mmol) were combined in a 100 ml round bottom flask with DMF (50 ml). The reaction mixture was refluxed under N₂ for 48 hours. The solvent was removed by rotary evaporation and Fc-Ph₂-CHO (1.276 g, 3.49 mmol) was obtained in a 60% yield after column chromatography using 40/60 (ν/ν) hexanes/CH₂Cl₂ as the eluent. ¹H NMR δ (CDCl₃): 10.08 (s, 1H), 7.98 (d, *J* = 7.0 Hz, 2H), 7.80 (d, *J* = 7.0 Hz, 2H), 7.59 (s, 4H), 4.77 (s, 2H), 4.43 (s, 2H), 4.13 (s, 5H). ESI-HRMS: *m/z* 366.073 [M+H]⁺, Calcd. 366.070 for C₂₃H₁₈FeO.

Fc-Ph-TPP and Fc-Ph-TPP-NO₂:

5-Phenyldipyrromethane (2.220 g, 10.0 mmol), Fc-Ph₂-CHO (1.830 g, 5.0 mmol), 4nitrobenzaldehyde (0.755 g, 5.00 mmol) and 1000 ml of CH_2Cl_2 were added to a 2000 ml round bottom flask. Trifluoroacetic acid (1.37 ml, 17.80 mmol) was added slowly over 30 s. The

reaction mixture was stirred at room temperature for 30 min. *N*,*N*-Diisopropylethylamine (3.00 ml, 18.00 mmol) was added followed by a solution of *p*-chloranil (3.700 g, 15.00 mmol) in THF (200 ml). The mixture was stirred at room temperature for further 6 hours. The solvent was removed by rotary evaporation and column chromatography using 50/50 (*v*/*v*) hexanes/CH₂Cl₂ as the eluent provided Fc-Ph-TPP (0.030 g, 0.03 mmol) in 2% yield. Fc-Ph-TPP-NO₂ (0.200 g, 0.07 mmol) was obtained using 30/70 (*v*/*v*) hexanes/CH₂Cl₂ as the eluent in 8% yield (overall yield). Fc-Ph-TPP: ¹H NMR δ (CDCl₃): 8.95 (d, *J* = 4.7 Hz, 2H), 8.87 (d, *J* = 4.7 Hz, 2H), 8.86 (s, 4H), 8.29 (d, *J* = 8.1 Hz, 2H), 8.23 (d, *J* = 7.8 Hz, 6H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.76 (m, 9H), 7.69 (d, *J* = 8.1 Hz, 2H), 4.77 (s, 2H), 4.40 (s, 2H), 4.13 (s, 5H), -2.73 (s, 2H). MS (MALDI+): *m*/z 875.237 [M⁺], Calcd. 874.275 for C₆₀H₄₂FeN₄. Fc-Ph-TPP-NO₂: ¹H NMR δ (CDCl₃): 9.00-8.70 (m, 8H), 8.60 (d, *J* = 8.5 Hz, 2H), 8.37 (dd, *J* = 2.3 and 6.1 Hz, 2H), 8.25 (d, *J* = 7.7 Hz, 2H), 4.38 (s, 2H), 4.11 (s, 5H), -2.75 (bs, 2H). MS (MALDI+): *m*/z 920.012 [M⁺], Calcd. 919.260 for C₆₀H₄₁FeN₅O₂.

Fc-Ph-ZnTPP (dyad 5):

Fc-Ph-TPP (0.035 g, 0.04 mmol) and CHCl₃ (50 ml) were added to a 100 ml round bottom flask. Zn(OAc)₂·2H₂O (0.041 mg, 0.19 mmol) dissolved in MeOH (15 ml) was added and the solution was stirred for 2 hours. The solution was then washed with water and dried over sodium sulfate.

Column chromatography using 30/70 (ν/ν) hexanes/CH₂Cl₂ as the eluent gave Fc-Ph-ZnTPP. (0.071 g, 0.07 mmol) in a 52% yield. ¹H NMR δ (CDCl₃): 9.04 (d, J = 4.5 Hz, 2H), 8.97 (d, J = 4.7 Hz, 2H), 8.95 (s, 4H), 8.30 (d, J = 7.9 Hz, 2H), 8.23 (d, J = 7.4 Hz, 6H), 8.02 (d, J = 8.0 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 7.76 (m, 9H), 7.68 (d, J = 8.1 Hz, 2H), 4.77 (s, 2H), 4.39 (s, 2H), 4.13 (s, 5H). MS (MALDI+): m/z 936.342 [M⁺], Calcd. 936.189 for C₆₀H₄₀FeN₄Zn.

Fc-Ph-TPP-NH₂:

Fc-Ph-TPP-NO₂ (0.359 g, 0.39 mmol), concentrated HCl (20 mL) and SnCl₂2H₂O (0.680 g, 3.00 mmol) were added to a 100 ml flask. The reaction was stirred at room temperature for 45 min and then heated at 65 °C for 30 min. The solution was cooled in ice and concentrated ammonia was added to neutralize the acid. Chloroform (500 mL) was added and the mixture was stirred for 1 hour. The layers were separated and the organic layer was washed twice with H₂O. The organic layer was dried over sodium sulfate and the solvent was removed by rotary evaporation. Fc-Ph-TPP-NH₂ (0.226 g, 0.25 mmol) was obtained in 65% yield after column chromatography using CH₂Cl₂ as the eluent. ¹H NMR δ (CDCl₃): 9.00-8.80 (m, 8H), 8.29 (dd, *J* = 1.7 and 6.5 Hz, 2H), 8.23 (m, 4H), 8.01 (m, 4H), 7.86 (dd, *J* = 1.7 and 6.5 Hz, 2H), 7.76 (m, 6H), 7.70 (dd, *J* = 1.5 and 6.7 Hz, 2H), 7.07 (d, *J* = 8.0 Hz, 2H), 4.77 (s, 2H), 4.40 (s, 2H), 4.13 (d, *J* = 1.3 Hz, 5H), 4.04 (bs, 2H), -2.73 (s, 2H). MS (MALDI+): *m/z* 890.496 [M⁺], Calcd. 889.286 for C₆₀H₄₃FeN₅.

Fc-Ph-ZnTPP-NMIS₂:

NMAS₂ (0.072 g, 0.22 mmol), Fc-Ph-TPP-NH₂ (0.160 g, 0.18 mmol), Zn(OAc)₂·2H₂O (0.141 g, 0.64 mmol) and 40 mL of pyridine were added to a 100 ml round bottom flask and refluxed under N₂ for 72 hours. The solvent was removed by rotary evaporation and column chromatography CH₂Cl₂ as the eluent gave Fc-Ph-ZnTPP-NMIS₂ (0.145 g, 0.12 mmol) in a 70% yield. ¹H NMR δ (CDCl₃): 9.18-8.92 (m, 8H), 8.61 (d, J = 8.0 Hz, 2H), 8.41 (d, J = 7.9 Hz, 2H), 8.31 (d, 7.7 Hz, 2H), 8.24 (d, J = 6.6 Hz, 4H), 8.04 (d, J = 7.4 Hz, 2H), 7.89 (d, J = 7.0 Hz, 2H), 7.78 (m, 6H), 7.70 (d, J = 7.9 Hz, 4H), 7.60 (d, J = 7.9 Hz, 2H), 4.80 (s, 2H), 4.42 (s, 2H), 4.16 (s, 5H). MS (MALDI+): *m/z* 1193.404 [M⁺], Calcd. 1193.149 for C₇₂H₄₃FeN₅O₂S₂Zn.

Fc-Ph₂-ZnTPP-[NMI-Fe¹-Fe¹-S₂(CO)₆] (triad 2):

S-11

Fc-Ph-ZnTPP-NMIS₂ (0.107 g, 0.09 mmol) was added to a 100 ml round bottom flask with 60 ml of THF. Fe₃(CO)₁₂ (0.059 g, 0.12 mmol) was added to the flask and the reaction was refluxed for 2 hours. The solvent was removed by rotary evaporation and Fc-Ph-ZnTPP-[NMI-Fe¹-Fe¹-S₂(CO)₆] (0.066 g, 0.045 mmol) was obtained in a 50% yield after column chromatography using CH₂Cl₂ as the eluent. ¹H NMR δ (CDCl₃): 9.14-8.93 (m, 8H), 8.61 (d, *J* = 7.6 Hz, 2H), 8.54 (d, *J* = 7.6 Hz, 2H), 8.40 (dd, *J* = 2.3 and 6.0 Hz, 2H), 8.31 (m, 4H), 8.24 (m, 2H), 8.03 (m, 2H), 7.88 (m, 2H), 7.78 (m, 6H), 7.69 (m, 4H), 4.78 (m, 2H), 4.40 (m, 2H), 4.14 (d, J = 2.3 Hz, 5H). ¹³C NMR (125 MHz, δ CDCl₃): 206.73, 163.63, 150.23, 143.46, 142.73, 141.55, 139.81, 138.78, 138.12, 135.61, 135.21, 135.00, 134.11, 133.19, 132.15, 130.15, 129.67, 127.54, 127.17, 126.64, 126.09, 125.13, 124.83, 38.81, 121.34, 121.05, 119.78, 84.88, 69.71, 69.13, 66.55. ESI-HRMS: *m/z* 1479.9858 [M+H]⁺, Calcd. 1479.0368 for C₇₈H₄₉Fe₃N₅O₈S₂Zn.

Figure S1. Normalized steady-state fluorescence spectra in CH_2Cl_2 , $\lambda_{ex} = 530$ nm.

Figure S2. IR spectra of (a) 3, (b) 1 and (c) 2 in toluene (black) and CH₂Cl₂ (red).

Figure S3. Time-resolved fluorescence signals (data: black curves, fits: red curves) in CH_2Cl_2 . Detection wavelength was 650 nm.

References:

- 1. M. Tesmer and H. Vahrenkamp, Eur. J. Inorg. Chem., 2001, 1183-1188.
- J. P. Collman, J. I. Brauman, K. M. Doxsee, T. R. Halbert, E. Bunnenberg, R. E. Linder, G. N. Lamar, J. Delgaudio, G. Lang and K. Spartalian, *J. Am. Chem. Soc.*, 1980, **102**, 4182-4192.
- J. T. Landrum, D. Grimmett, K. J. Haller, W. R. Scheidt and C. A. Reed, J. Am. Chem. Soc., 1981, 103, 2640-2650.
- 4. F. A. Walker and M. Benson, J. Am. Chem. Soc., 1980, 102, 5530-5538.
- B. J. Littler, M. A. Miller, C. H. Hung, R. W. Wagner, D. F. O'Shea, P. D. Boyle and J. S. Lindsey, *J. Org. Chem.*, 1999, 64, 1391-1396.
- 6. F. D'Souza, P. M. Smith, S. Gadde, A. L. McCarty, M. J. Kullman, M. E. Zandler, M. Itou, Y. Araki and O. Ito, *J. Phys. Chem. B*, 2004, **108**, 11333-11343.