Electronic Supplementary Information (ESI)

High-Performance Asymmetric Supercapacitor Fabricated with Graphene-Based Electrodes

Jintao Zhang,^a Jianwen Jiang,^a Hongliang Li^b and X. S. Zhao^{a,b}*

^a Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore. Fax: +65 67791936; Tel:

+65 65164727; E-mail: <u>chezxs@nus.edu.sg</u>

10

^b Institute of Multifunctional Materials, Qingdao University

Figure S1. Raman spectra of samples RGO, RGO-RuO₂, and RGO-PANi.

Figure S2. A TEM image showing wrinkles on the surface of RGO.

Figure S3. EDS analysis of sample RGO-RuO2.

Figure S4. Cyclic voltammograms at a scan rate of 50 mV/s (a) and charge/discharge curves at a current density of 1 A g⁻¹ (b) of symmetric supercapacitors RGO-RuO₂//RGO-RuO₂ with different Ru loadings.

10

The CV curves of (Fig. S4a) all exhibit a rectangle shape with a gradual increase in current density with increasing Ru content, showing the capacitance was increased. The charge/discharge curves (Fig. S4b) all show an equilateral triangle shape, suggesting good capacitive properties. On the basis of the charge/discharge curves, the specific capacitances of the RGO-RuO₂ electrodes with different Ru loadings were calculated to be about 268 F g⁻¹ (16 wt% Ru loading), 344 F g⁻¹ (33 wt% Ru loading), and 400 F g⁻¹ (66 wt% Ru loading). In this study, we selected the RGO-RuO₂ sample with about 33 wt% Ru loading as an example to fabricated asymmetric supercapacitors.

5

Figure S5. Cyclic voltammograms (a) and charge/discharge curves (b) of symmetric supercapacitor RGO //RGO.