Electronic Supporting Information

FeN nanoparticles confined in carbon nanotubes for CO hydrogenation

Zhiqiang Yang^a, Shujing Guo^a, Xiulian Pan^{a,*}, Junhu Wang^b and Xinhe Bao^{a,*}

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China, Tel: +86-411-8468 6637; Fax: +86-411-8437 9128, E-mail: panxl@dicp.ac.cn, xhbao@dicp.ac.cn

b Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.

Experimental details

 Fe_2O_3 nanoparticles were introduced into CNTs (Chengdu Organic Chemicals, MFG code M12020702R) following our previously reported procedure.¹⁻³ More than 80% Fe_2O_3 nanoparticles were located inside the CNT channels. Fe_2O_3 -*in* was nitrided via temperature-programmed reaction method in ammonia atmosphere, adapted from a procedure reported earlier for bulk materials.⁴ Briefly, the sample was heated to a certain temperature and maintained for 2 h. After nitridation treatment, the sample was passivated in 1% O₂/He (20 ml/min) for 12 h before exposure to air. The resulting catalyst was labeled as Fe_xN -*in*-T, where T represents the nitridation temperature.

We also prepared an Fe_xN-*out* catalyst for comparison with Fe_xN particles dispersed on the exterior walls of CNTs. Fe₂O₃ particles were first deposited on the exterior walls with a precipitation-deposition method using Fe(NO₃)₃ and ammonia as the precursors. Following drying at 60 °C and treatment at 350 °C in Ar, the sample was subjected to the same nitridation treatment procedure as Fe_xN-*in*. In addition, Fe-*in* was prepared by reducing the CNT-confined Fe₂O₃ directly in H₂ for 6 h at $350 \degree C$.³

Inductively coupled plasma atomic emission spectrometry (ICP-AES, SHIMADZU ICPS-8100) analysis showed that Fe₂O₃-*in* had an iron loading of 5.61 wt% and Fe₂O₃-*out* of 5.24 wt%. Transmission electron microscopy (TEM) was carried on a FEI Tecnai G² microscope at an accelerating voltage of 120 kV. X-ray diffraction (XRD) was measured on a Rigaku D/Max 2500 diffractometer with a Cu K α (λ =1.541 Å) monochromatic radiation source. Some samples were also measured at the BL14B1 beamline (λ =1.2398 Å) of the Shanghai Synchrotron Radiation Facility (SSRF). ⁵⁷Fe Mössbauer spectroscopy analysis was conducted on a Topologic 500A spectrometer with a proportional counter. ⁵⁷Co(Rh) was used as the radioactive source and the Doppler velocity of the spectrometer was calibrated with an α -Fe foil. The spectra were fitted with appropriate superpositions of Lorentzian lines using the MossWinn 3.0i program.

CO hydrogenation was carried out in a fixed bed microreactor at 300 °C, 5 bar and a gas hourly space velocity (GHSV) of 15000 h⁻¹ (based on the volume of syngas passed through per volume of the catalyst per hour). A H₂/CO/Ar mixture (47.5/47.4/5.1 vol.%, purity of 99.99%) was taken as the feeding gas with Ar as an internal standard. 100mg catalyst was loaded into the reactor and pre-treated *in-situ* for 2 h in syngas (1 bar) at 260 °C. All gas lines after the reactor were kept at 150 °C. The effluents were analyzed by an online GC (Agilent 7890A), which was equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). Four chromatography columns were installed, i.e. Porapak Q and 5 Å molecular sieves packed columns, and modified Al₂O₃ and FFAP capillary columns.

Figure S1 TEM images of the Fe₂O₃-*in* catalyst taken at different tilt angles: (a) $\alpha = -10^{\circ}$, $\beta = 0^{\circ}$; (b) $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$; (c) $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$; (d) $\alpha = 15^{\circ}$, $\beta = 0^{\circ}$; (e) $\alpha = 0^{\circ}$, $\beta = -5^{\circ}$; (f) $\alpha = 0^{\circ}$, $\beta = -10^{\circ}$. The images taken at different tilt angles indicate that most of the Fe₂O₃ nanoparticles of Fe₂O₃-*in* catalyst are located inside the channel of CNTs.

Figure S2 TEM images of the Fe₂O₃-*out* catalyst taken at different tilt angles: (a) $\alpha = -10^{\circ}$, $\beta = 0^{\circ}$; (b) $\alpha = 0^{\circ}$, $\beta = 0^{\circ}$; (c) $\alpha = 10^{\circ}$, $\beta = 0^{\circ}$; (d) $\alpha = 20^{\circ}$, $\beta = 0^{\circ}$; (e) $\alpha = 0^{\circ}$, $\beta = 5^{\circ}$; (f) $\alpha = 0^{\circ}$, $\beta = -10^{\circ}$. From the images taken at different tilt angles we did not observe Fe₂O₃ nanoparticles of Fe₂O₃-*out* inside the CNT channels.

Figure S3. TEM images of CNT-supported iron nitride prepared at different nitridation temperatures.

Figure S4. XRD patterns of CNT supported iron nitride prepared at different nitridation temperatures (a) Fe_xN -*in* and (b) Fe_xN -*out*.

Sample	Subspectra	IS ^a	QS ^b	Hc	%Area ^d	Assignment
		(mm/s)) (mm/s)	(T) (
Fe _x N- <i>in</i> - 450	Fe-I	0.08	0	0	14	γ''-FeN
150	Fe-II	0.32	0.92	0	86	γ "- or γ "-FeN with vacancies
Fe _x N- <i>out</i> - 400	Fe-I	0.06	0	0	21	γ''-FeN
	Fe-II	0.32	0.82	0	69	γ "- or γ "-FeN
	Fe-III	0.41	0.27	0	10	ζ -Fe ₂ N
^a Isomer shif ^d Uncertainty	t relative to is $\pm 5\%$.	α-Fe.	^b Electric	quadrupole	splitting.	^c Magnetic field.

Table S1. Fitting parameters for the ⁵⁷Fe Mössbauer spectra in Figure 1e.

Table S2. Fitting parameters for the ⁵⁷Fe Mössbauer spectra in Figure 2b.

Sample	e Sı	ubspectra	l	IS ^a	QS^{b}		QS ^b		QS ^b H ^c		[^c	%Area ^d		ead	Assignment	
				(mm/s)		(mm/	s)	(]	[)							
Fe _x N- <i>in</i> 450	-	Fe-I		0.22		0.05	5	15	.9		22		Fe ₂ C	x _x N _{1-x}		
		Fe-II		0.34		0.99)	()		74		FeC	_x N _{1-x}		
		Fe-III		0.09		0		()		4		γ"-	FeN		
Fe _x N- <i>ou</i> 400	t-	Fe-I		0.23		0.02	2	15	.9		44		Fe ₂ C	x _x N _{1-x}		
		Fe-II		0.31		1.08	3	()		49		FeC	_x N _{1-x}		
		Fe-III		0.09		0		()		7		γ"-	FeN		
^a Isomer	shift	relative	to	α-Fe.	^b Elee	etric	quad	lrupo	le	splitti	ng.	°Mag	netic	field.		
^d Uncertainty is $\pm 5\%$.																

Figure S5. Room temperature ⁵⁷Fe Mössbauer spectra of 10% Fe_xN/SiO₂. Nitridation was carried out in ammonia at 500 °C via the same temperature-programmed reaction method as CNTs supported iron nitride catalysts. The isomer shift (IS) is 0.33 mm/s, the quadrupole splitting (QS) is 0.44 mm/s and the iron species exist as ϵ -Fe_{2.1}N in Fe_xN/SiO₂.

Table S3. Catalytic performance of 10%Fe₂N/SiO₂ catalyst in CO hydrogenation^a

Activity	CO_2	СН	Product distribution (mol%)						
$(\mu mol_{CO} s^{-1} g^{-1}{}_{Fe})$	sel.	sel.	CH ₄	$C_2^{=}-C_4^{=}$	$(C_2^{=}-C_4^{=})/(C_2^{0}-C_4^{0})$	C_{5}^{+}			
75.6	40.5	58.3	30.5	42.4	2.8	11.7			
^{<i>a</i>} Reaction condition: 300°C, 5bar, H ₂ /CO/Ar (47.5/47.4/5.1), GHSV=15000h ⁻¹									

References

- W. Chen, X. Pan, M.-G. Willinger, D. S. Su and X. Bao, J. Am. Chem. Soc., 2006, 128, 3136-3137.
- 2. W. Chen, X. Pan and X. Bao, J. Am. Chem. Soc., 2007, 129, 7421-7426.
- 3. W. Chen, Z. Fan, X. Pan and X. Bao, J. Am. Chem. Soc., 2008, 130, 9414-9419.
- M. Zheng, X. Chen, R. Cheng, N. Li, J. Sun, X. Wang and T. Zhang, *Catal. Commun.*, 2006, 7, 187-191.