Electronic Supplementary Information for Energy and Environmental Science

Supplementary Information:

Releasing 17.8 wt % H₂ from Lithium Borohydride Ammoniate

Table of Contents					
Paragraph	Procedure of Synthesis	P.2			
Fig. S1	Room temperature XRD pattern of 2Li(NH ₃)BH ₄ -MgCl ₂	p. 3			
	sample collected after heating at 90 °C for 5 min.				
Fig. S2	NH ₃ desorption at the equilibrium of liquid-state	p. 5			
	$Li(NH_3)_{1.2}BH_4$ and $Li(NH_3)_{1.4}BH_4$ samples as a function of				
	temperature. Profile of Li(NH ₃) _{4/3} BH ₄ upon heating to 200 $^{\circ}\mathrm{C}$				
	was also included.				
Fig. S3	Hydrogen release from the Co-doped $Li(NH_3)_{4/3}BH_4$ sample	p. 6			
	at a) 140 °C for 3 hours and b) 180 °C for 7 hours,				
	respectively.				
Fig. S4	¹¹ B NMR spectrum of the solid residue collected after the	p. 7			
	Li(NH ₃) _{4/3} BH ₄ sample dehydrogenated at 250 °C.				
Fig. S5	Room temperature XRD patterns of a) $2LiBH_4$ - $Li_4BN_3H_{10}$	p. 7			
	after held at 70 $^\circ C$ for 2 hours and then cooled to room				
	temperature, b) Li_2BNH_6 after held at 90 °C for 10 hours and				
	then cooled to room temperature.				

Fig. S6	a) Volumetric rel	lease curve	of the ball milled	l post-140	°C	p. 8	
	dehydrogenated	Co-doped	Li(NH ₃) _{4/3} BH ₄	sample,	b)		
	Temperature profile.						

Fig. S7 TEM image of the Co-doped LiBH₄ sample after ball milling. p. 8

Fig. S8 Co K-edge XAFS spectra of CoCl₂, metallic Co and p. 9
Co-doped LiBH₄ sample after ball milling and the Co-doped
Li(NH₃)_{4/3}BH₄ samples after dehydrogenation at 180 and
250 °C, respectively.

Calculation procedures of NH_3 contents remaining in the $Li(NH_3)_{1,2}BH_4$ p. 3 and $Li(NH_3)_{1,4}BH_4$ samples as a function of temperature.

1. Procedure of Synthesis

The synthesis and volumetric apparatus were composed of NH₃ vessel, LiBH₄ vessel and a digital pressure gauge. Co-LiBH₄ (0.1046 g, 4.121 mmol) and NH₃ (0.0939 g, 5.524 mmol) are stored in two vessels separately. To make LiBH₄/NH₃ molar ratio ³/₄, the amount of NH₃ in the vessel should be more than the theoretical value due to the NH₃ equilibrium pressure of LiBH₄ ammoniate. NH₃ was gradually introduced to LiBH₄ vessel at room temperature. After absorption, the NH₃ vessel was weighed and the mass loss was the exact content of the LiBH₄ ammoniate (usually should be LiBH₄/NH₃ molar ratio ³/₄). Then the volumetric release was conducted in the small LiBH₄ vessel (6.7 ml), and the pressure change inside the volumetric apparatus was recorded by a digital pressure gauge (*J. Mater. Chem.* 2009, *19*, 8426.).

Fig. S1 XRD patterns of 2Li(NH₃)BH₄-MgCl₂ sample collected after heating at 90 °C for 5 min.

The $2Li(NH_3)BH_4$ -MgCl₂ sample was prepared by mixing fresh $Li(NH_3)BH_4$ with anhydrous MgCl₂ in the molar ratio of 2:1, after hand milling for 5 min, the mixture was heated to 90 °C for 5 min in a sealed bottle and then cooled down slowly.¹

Calculation procedures of NH₃ contents remaining in the Li(NH₃)_{1.2}BH₄ and Li(NH₃)_{1.4}BH₄ samples as a function of temperature:

Since the Co-doped Li(NH₃)_{4/3}BH₄ sample converts to liquid state at temperature around 55 °C, in addition, hydrogen evolution took place at ca. 135 °C and 200 °C (Fig. 1B) for the Co-doped and neat samples, respectively, therefore, our calculation of NH₃ remaining in the sample as a function of temperature focused on temperatures above 55 °C. When the sample is put in a closed vessel, the amounts of NH₃ released from the sample at given temperatures were calculated from the free volume of gas and NH₃ vapor pressure at equilibrium. By referencing to the previous work on pressure-composition-isothermal properties of LiBH₄-NH₃ system,² the equilibrium pressure (P) of NH₃ at given temperature (T) can be determined from Clausius-Clapeyron equation (Equation S1),

$$\log P(mm) = -A/T + B \tag{S1}$$

where A and B were empirical constants determined by Sullivan and Johnson (shown in Table S1).² As there is no thermodynamic data available for the composite of $Li(NH_3)_{4/3}BH_4$,^[2] we calculated the temperature dependences of NH₃ equilibrium pressure of the liquid-state $Li(NH_3)_{1.2}BH_4$ and $Li(NH_3)_{1.4}BH_4$. Once the *P* and *T* are known, the specific numbers of NH₃ can be determined through the Van der Waals equation (Equation S2) which takes into account the molecular stickiness and the molecular size of gas,³ and the NH₃ content detached in the gas phase (equiv.) and remaining in the vicinity of the sample (%) can be calculated from Equation S3 and S4, respectively,

$$\left(P + \frac{an^2}{V^2}\right)\left(V - nb\right) = nRT\tag{S2}$$

$$NH_3(Equiv.) = \frac{n}{m}$$
(S3)

$$NH_3(\%) = (1 - \frac{n}{c \times m}) \times 100\%$$
 (S4)

Where *P* is the pressure of the gas (atm), *V* the free volume of gas (L), *n* the number of moles, *R* the universal gas constant (0.08206 L·atm/(mol·K)), *T* the absolute temperature (K), a and b are the Van der Waals constants which reflect the attraction between the molecular particles and the volume of a mole of gas molecule at rest, respectively. For NH₃, a and b are 4.170 L²·atm/mol² and 0.03707 L/mol, respectively. m is sample loading amount (mol) and c is the molar ratio of NH₃/LiBH₄, for $Li(NH_3)_{1,2}BH_4$ or $Li(NH_3)_{1,4}BH_4$, is 1.2 or 1.4, respectively. The с temperature-dependent equivalent numbers of NH₃ release from Li(NH₃)_{1.2}BH₄ and Li(NH₃)₁₄BH₄ samples, and our Li(NH₃)_{4/3}BH₄ sample heating to 200 °C were shown in Fig. S2, it can be seen that at temperatures below 200 °C the slight pressure increase in Li(NH₃)_{4/3}BH₄ is probably due to NH₃ release. Table S2 presents the percentage of NH₃ remaining in the Li(NH₃)_{1,2}BH₄ and Li(NH₃)_{1,4}BH₄ samples at 55, 135 and 200 °C, the corresponding values for our Li(NH₃)_{4/3}BH₄ sample should be in-between.

Table S1. Values of A, B for Li(NH₃)_{1.2}BH₄ and Li(NH₃)_{1.4}BH₄ samples.

Sample	А	В
Li(NH ₃) _{1.2} BH ₄	2415	8.709
Li(NH ₃) _{1.4} BH ₄	2276	8.528

Fig. S2 Temperature-dependent NH_3 desorption at the equilibrium of liquid-state $Li(NH_3)_{1,2}BH_4$ and $Li(NH_3)_{1,4}BH_4$ samples. Profile of the $Li(NH_3)_{4/3}BH_4$ sample upon

heating to 200 °C was also included.

Table S2. Percentage of NH₃ remaining in Li(NH₃)_{1.2}BH₄ and Li(NH₃)_{1.4}BH₄ at varied

temperatures						
Sample	55 °C	135 °C	200 °C			
Li(NH ₃) _{1.2} BH ₄	99.9%	96.7%	81.2%			
Li(NH ₃) _{1.4} BH ₄	99.8%	95.9%	79.1%			

Fig. S3 Hydrogen release from the Co-doped Li(NH₃)_{4/3}BH₄ sample at (A) 140 °C for 3 hours and (B) 180 °C for 7 hours, respectively.

Fig. S4 ¹¹B NMR spectrum of the solid residue collected after the $Li(NH_3)_{4/3}BH_4$ sample dehydrogenated at 250 °C.

Fig. S5 Room temperature XRD patterns of (A) $2\text{LiBH}_4\text{-Li}_4\text{BN}_3\text{H}_{10}$ after held at 70 °C for 2 hours and then cooled to room temperature, (B) Li_2BNH_6 after held at 90 °C for 10 hours and then cooled to room temperature.

In both cases, Li₂BNH₆ could be observed after the samples were cooled to room

temperature, which evidences the recombination of $Li_4BN_3H_{10}$ and $LiBH_4$ to Li_2BNH_6 during the sample cooling process is possible.

Fig. S6 (A) Volumetric release curve of the ball milled post-140 °C dehydrogenated Li(NH₃)_{4/3}BH₄ sample, (B) Temperature profile.

The post-140 °C dehydrogenated sample was ball milled at 200 rpm for 2 hours, and was heated to 140 °C at a heating rate of 0.5 °C/min.

Fig. S7 TEM image of the Co-doped LiBH₄ sample after ball milling.

Fig. S8 Co K-edge XAFS spectra of CoCl₂, metallic Co and Co-doped LiBH₄ sample after ball milling and the Co-doped Li(NH₃)_{4/3}BH₄ samples after dehydrogenation at 180 and 250 °C, respectively.

References

- 1 Y. H. Guo, G. L. Xia, Y. H. Zhu, L. Gao and X. B. Yu, Chem. Commun. 2010, 46, 2599.
- 2 E. A. Sullivan and S. Johnson, J. Phys. Chem. 1959, 63, 233.
- 3 R. G. Weast, Handbook of Chemistry and Physics, 62 ed., C.R.C. Press, 1982.