Reversibility of the Hydrogen Desorption from NaBH₄ by Confinement in Nanoporous Carbon

Peter Ngene^a, Roy van den Berg^a, Margriet H. W. Verkuijlen^b, Krijn P. de Jong^a and Petra E. de Jongh

Supplementary information

Effect of loading on the structure of the melt infiltrated nanocomposites

Fig. S1 XRD patterns of melt infiltrated NaBH₄/C nanocomposites with various loading of NaBH₄. No crystalline NaBH₄ is observed for composites containing less than 25wt% NaBH₄

Effect of NaBH₄ loading on the hydrogen release from the nanocomposites

Fig.S2 Hydrogen release from 10 and 25 wt% melt infiltrated (MI) and 25wt% solution impregnated (SI) NaBH₄/C nanocomposites. For the MI samples, decreasing the NaBH₄ loading lead to desorption at lower temperatures which are comparable to the SI nanocomposite.

Cycling of the Nanocomposites

Fig.S3 Cycling (dehydrogenation and rehydrogenation cycles) of the nanocomposites as measured gravimetrically in Rubotherm suspension balance. The nanocomposites can be dehydrogenated and rehydrogenated (at 60 bar H_2 , 325 °C for 5h) repeatedly. However, the capacity decreases upon cycling. Similar observation was made for the melt infiltrated nanocomposites.

Infiltration of carbon pores during dehydrogenation of physical mixtures

Fig.S4 Nitrogen physisorption showing a decrease in the volume of nitrogen adsorbed (decrease in pore volume of the carbon) after dehydrogenation of a physical mixture of 25wt% NaBH₄ and carbon. The total pore volume of the carbon decreased from 0.64 cm³/g C for the physical mixture (PM) to 0.38 cm³/g C after dehydrogenation (Deh. PM). This corresponds to a decrease of 0.26 cm³/g C. The volume of NaBH₄ added in the mixture before desorption is 0.31 cm³.

Fig.S5 Solid-state ¹¹B NMR spectra of dehydrogenated (bulk deh) and rehydrogenated (bulk reh) NaBH₄

The dehydrogenated NaBH₄ gives a broad peak mainly from amorphous Na₂B₁₂H₁₂ and traces of unreacted NaBH₄. After rehydrogenation at 60 bar H₂, 325 °C for 5 h, no major changes occurred in the structure of the compound, indicating no reversible formation of NaBH₄ during rehydrogenation

Fig.S6 Solid-state ²³Na NMR spectra of dehydrogenated (bulk deh) and rehydrogenated (bulk reh) NaBH₄

The dehydrogenated NaBH₄ gives resonances due to metallic Na and Na₂B₁₂H₁₂. After rehydrogenation, NaH peak is clearly seen, together with peak due to Na₂B₁₂H₁₂. The assignment of Na₂B₁₂H₁₂ in the ²³Na spectra is done based on the fact that large amount of Na₂B₁₂H₁₂ was also observed in the ¹¹B spectra (and not by a comparison with a ²³Na reference spectrum of Na₂B₁₂H₁₂). The resonance has a maximum at 3 ppm, and it is clearly not NaH which is at 18.3 ppm.

Equilibrium compositions for NaBH₄ decomposition

Fig.S7 Equilibrium diagram for the decomposition of $NaBH_4$. The calculation was done using HSC7 software and calculated standard enthalpy of formation of $Na_2B_{12}H_{12}$ in reference 54 of the main article.

The graph shows that Na and Na₂B₁₂H₁₂ are the thermodynamically most stable phases when NaBH₄ is heated to 600 °C. Note that only 1.5 mole H₂ (8.1 wt% H₂) per mole NaBH₄ is released while the Na formed is already in gaseous state above 450 °C, in line with the experimental results. Due to the high stability of Na₂B₁₂H₁₂, temperatures above 700 °C will be required for complete decomposition of NaBH₄ into Na and B.