SUPPORTING INFORMATION

Separation of CO₂ from Air by Temperature-Vacuum Swing Adsorption Using Diamine-Functionalized Silica Gel

Jan Andre Wurzbacher^{a,b}, Christoph Gebald^{a,b,c}, Aldo Steinfeld^{a,d,*}

^a Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
 ^b Climeworks LLC, 8044 Zurich, Switzerland
 ^c EMPA Material Science and Technology, 8600 Dübendorf, Switzerland
 ^d Solar Technology Laboratory, Paul Scherrer Institute, 5232 Villigen, Switzerland
 ^{*} Corresponding author; Email: aldo.steinfeld@ethz.ch

N₂ Adsorption/Desorption Isotherms

Figure S1. N₂ adsorption (closed symbols) and desorption (open symbols) isotherms for non-modified silica gel support (ZEObeadsTM B2, triangles) and SI-AEATPMS sorbent material (circles).

Energy Requirements

The energy requirements for sorbent regeneration in the TVS process were estimated using the assumptions summarized in Table S1. The work W_{comp} required for compression of the CO₂ from desorption pressure to ambient pressure was calculated according to Eq. (S1. The heat (low-temperature heat at below 95 °C) required for heating up the sorbent material to the desorption temperature Q_{sens} and for desorption of CO₂ and co-adsorbed H₂O Q_{des} was calculated according to Eq. (S2 and Eq. (S3, respectively. The total required heat Q is the sum of Q_{sens} and Q_{des} (Eq. (S4). A ratio of co-adsorbed water and adsorbed CO₂ of approximately 1 was assumed.¹

$$W_{comp} = \frac{1}{\eta_{pump}} \cdot R \cdot T \cdot ln\left(\frac{p_{amb}}{p_{des}}\right)$$
(S1)

$$Q_{sens} = \frac{1}{\Delta q_{\rm TVS}} \cdot c_p \cdot \Delta T \tag{S2}$$

$$Q_{des} = Q_{des,CO2} + Q_{des,H2O} \tag{S3}$$

$$Q = Q_{sens} + Q_{des} \tag{S4}$$

Assumption	Symbol	Value	Source
Cyclic CO ₂ capacity of sorbent (SI-AEAPTMS material used in this work)	Δq_{TVS}	0.2 mmol/g	this work
Cyclic CO ₂ capacity of sorbent (advanced sorbent material with higher cyclic capacity)	Δq_{TVS}	2 mmol/g	2
Heat capacity of the sorbent material (silica)	c _p	$0.9 \frac{\text{kJ}}{\text{kg} \cdot \text{K}}$	3
Temperature difference between adsorption and desorption	ΔΤ	65 K	this work
Heat of desorption, CO ₂	$Q_{des,CO2}$	$\approx 90 \frac{\text{kJ}}{\text{mol}}$	4,5
Heat of desorption, co-adsorbed H ₂ O	$Q_{des,H20}$	$\approx 47 \frac{\text{kJ}}{\text{mol}}$	4
Amount of co-adsorbed H ₂ O	n_{H20}/n_{C02}	1	1
Desorption pressure	p_{des}	100 mbar	this work
Vacuum pump efficiency (with respect to isothermal compression at $T = 350$ K)	η_{pump}	0.7	estimation

Table S1. Assumptions for energy requirement estimation.

References

- 1 R. Serna-Guerrero, E. Da'na and A. Sayari, *Ind. Eng. Chem. Res.*, 2008, 47, 9406-9412.
- 2 S. Choi, M. L. Gray and C. W. Jones, *Chemsuschem*, 2011, 4, 628-635.
- 3 *VDI Waermeatlas*, Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC), Springer, Berlin Heidelberg, 2006.
- 4 S. Satyapal, T. Filburn, J. Trela and J. Strange, *Energy Fuels*, 2001, **15**, 250-255.
- 5 R. Serna-Guerrero, Y. Belmabkhout and A. Sayari, *Chem. Eng. J.*, 2010, **161**, 173-181.