Supporting Information

Bimetallic IrNi Core Platinum Monolayer Shell Electrocatalysts for the Oxygen Reduction Reaction

Kurian A. Kuttiyiel^a, Kotaro Sasaki^a, YongMan Choi^a, Dong Su^b, Ping Liu^a and Radoslav R. Adzic^{a*}.

^aChemistry Department, Brookhaven National Laboratory, Upton, NY 11973 ^bCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973

*To whom correspondence should be addressed: adzic@bnl.gov

Figure S1 The *ex situ* XAS analysis for Pt and Ir L3 edge for the scaled-up $Pt_{ML}/IrNi/C$ nanoparticles.

Figure S2 Voltammetry curves for the thin-film electrodes of the $Pt_{ML}/IrNi/C$ nanoparticles and upd of Cu on them in 0.1M HClO₄ solution; scan rate 20mV/s.

Figure S3 Polarization curves for the ORR on the scaled-up Pt monolayer IrNi core electrocatalyst at various rpm in oxygen-saturated 0.1 M HClO₄.

Figure S4 Levich-Koutecky plot for scaled-up Pt monolayer IrNi core electrocatalyst at various potentials

Figure S5 Polarization curves for the ORR for scaled-up $Pt_{ML}/IrNi/C$ electrocatalysts at 1600 rpm in oxygen-saturated 0.1 M HClO₄ at room temperature before and after 50000 cycles; the scan rate was $10mVs^{-1}$. The inset shows the corresponding cyclic voltammetry in argon-saturated 0.1 M HClO₄; the scan rate was $20mVs^{-1}$.

