oxazolidinones

Electronic Supplementary Information

CO₂ capture and activation by superbase/polyethylene glycol and its subsequent conversion

Zhen-Zhen Yang, Liang-Nian He,* Ya-Nan Zhao, Bin Li and Bing Yu

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.

* Corresponding author: Tel: +86-22-23501493; Fax: +86-22-23501493; E-mail: heln@nankai.edu.cn

Table of Contents

	page
1. General experimental methods	S2
2. Characterization of the absorption system, amidinium/guanidinium alky salts, aziridines, ureas and oxazolidinones	lcarbonate S2
3. Reference	S7
4. The ¹ H NMR and ¹³ C NMR Charts, IR spectra for the absorp amidinium/guanidinium alkylcarbonate salts, aziridines,	tion system, ureas and

S8

1. General experimental methods:

Caution

Experiments using compressed gases CO_2 are potentially hazardous and must only be carried out by using the appropriate equipment and under rigorous safety precautions.

Materials

Superbases and PEG used in this work were purchased from Alfa Aesar-A Johnson Matthey Company and dried under vacuum at 70 $^{\circ}$ C for one week before use. CO₂ with a purity of 99.999% was commercially available. Amines was refluxed for 10 h with CaH₂ and distilled prior to use. NH₂PEG150NH₂¹ and aziridines² was synthesized according to the reported method.

Experimental methods

¹H NMR spectra was recorded at Bruck 400 spectrometer in CDCl₃ and CDCl₃ (7.26 ppm) was used as internal reference, ¹³C NMR was recorded at 100.6 MHz in CDCl₃ and CDCl₃ (77.0 ppm) was used as internal reference. GC analyses were performed on Shimadzu GC-2014, equipped with a capillary column (RTX-17, 30 m × 0.25 μ m) using a flame ionization detector. *In situ* FTIR was collected on a Mettler Toledo React IR ic10, Diamond ATR probe, using ic IR analysis system. The probe is placed in the middle of the absorption mixture, which is constantly stirred by magnetic whisk, and the spectra are collected *in situ* during CO₂ absorption. Infrared (IR) spectra were recorded on a Bruker Tensor27 FT-IR spectrophotometer with KBr pellets.

General procedure for CO₂ absorption

In a typical procedure, CO_2 capture was carried out in a 10 mL Schlenk flask. The absorbents were charged into the reactor at room temperature. Then, the air in the flask was replaced by CO_2 and a needle was used for CO_2 bubbling, which was inserted in the bottom of the flask. The absorption reaction was conducted at 40 °C with a CO_2 bubbling rate of 0.1 L/min. The amount of CO_2 absorbed was determined by an Analytical Balance within an accuracy of ± 0.0001 g every five minutes. Absorption/desorption was determined by several cycles of repeated experiments.

General procedure for synthesis of value-added chemicals using captured CO₂

Taking the systhesis of 1,3-dibutylurea as an example: Firstly, DBU (3 mmol, 0.4567 g) and PEG₁₅₀ (3 mmol, 0.45 g) were charged into a glass tube, in which CO₂ was bubbled through a needle. Then, 1-butylamine was added after CO₂ absorption reached equilibrium. The tube was placed into a 25 mL stainless steel autoclave and then the mixture was stirred at predetermined temperature for 5 min to reach the equilibration. When the reaction finished, the reactor was cooled in ice-water and CO₂ was ejected slowly. An aliquot of sample was taken from the resultant mixture and dissolved in dry CH₂Cl₂ for GC analysis.

2. Characterization of the absorption system, amidinium/guanidinium alkylcarbonate salts, aziridines, ureas and oxazolidinones

DBU (1,8-diazabicyclo[5.4.0]undec-7-ene):

¹H NMR (400 MHz, CDCl₃) δ 3.23 (t, ³*J* = 5.6 Hz, 2 H), 3.13-3.18 (m, 4 H), 2.33-2.35 (m, 2 H), 1.72-1.77 (m, 2 H), 1.60 (s, 4 H), 1.52 (s, 2 H); ¹³C NMR (100.6 MHz, CDCl₃) δ 161.6, 52.8, 48.3, 44.0, 37.2, 29.7, 28.4, 25.9, 22.3. IR 3420, 2924, 2851, 1616, 1486, 1441, 1366, 1312, 1260, 1233, 1183, 1115, 1060, 991, 955 cm⁻¹.

PEG₁₅₀ (triethylene glycol, **MW** = 150 Da):

¹H NMR (400 MHz, CDCl₃) δ 3.71 (t, ³*J* = 4.8 Hz, 4 H), 3.65 (s, 4 H), 3.59 (t, ³*J* = 4.8 Hz, 4 H), 3.40 (s, 2 H); ¹³C NMR (100.6 MHz, CDCl₃) δ 72.6, 70.3, 61.5. IR 3446, 2865, 2360, 2341, 2136, 1954, 1653, 1457, 1351, 1082, 937, 889, 830, 571, 525 cm⁻¹.

DBU/PEG₁₅₀ + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.56-3.70 (m, 12 H), 3.29-3.34 (m, 6 H), 2.61 (s, 2 H), 1.85-1.90 (m, 2 H), 1.66-1.67 (m, 4 H), 1.59 (s, 2 H); ¹³C NMR (100.6 MHz, CDCl₃) δ 164.1, 158.5, 72.6, 70.3, 64.1, 61.3, 53.5, 48.4, 40.6, 34.1, 29.3, 27.6, 24.8, 20.8.

Fig. S1 The ¹H NMR of DBU, PEG₁₅₀ and DBU/PEG₁₅₀ + CO₂ (CDCl₃, 400 MHz).

	DBU	DBUPEG ₁₅₀ CO ₂	PEG ₁₅₀
	1.52 (2H)	1.59 (2H)	
¹ H NMR /ppm	1.60 (4H)	1.60-1.67 (4H)	
	1.72-1.77 (2H)	1.85-1.90 (2H)	
	2.33-2.35 (2H)	2.61 (2H)	
	3.13-3.18 (4H)		
	3.23 (2H)	3.29-3.34 (6H)	
		3.56-3.70 (12H)	3.59-3.71 (12H)
	22.3	20.8	
	25.9	24.8	
	28.4	27.6	
	29.7	29.3	
	37.2	34.1	
	44.0	40.6	
	48.3	48.4	
¹³ C NMR	52.8	53.5	
/ppm		61.3	61.5
		64.1	
		70.3	70.3
		72.6	72.6
		158.5	
	161.6	164.1	

Table S1 The comparison of ¹ H and ¹³ C NMR chemical shifts of	f DBU, PEG ₁₅₀ and DBU/PEG ₁₅₀ + CO
--	---

Figure S2. Results of *in situ* FT-IR spectroscopy monitoring CO₂ capture by DBU/PEG₁₅₀ system at various times starting from CO₂ bubbling; The spectrum of DBU and PEG₁₅₀ was subtracted; \blacklozenge : CO₂ began to be bubbled at 40 °C; \diamondsuit : Temperature was gradually increased form 40 °C to 120 °C.

Figure S3. The scanning thermogravimetric analysis (TGA) results for DBU/PEG₆₀₀+CO₂ with a 10 °C min⁻¹ temperature ramping rate to 700 °C.

PEG₆₀₀ (polyethylene glycol, MW = 600 Da):

¹H NMR (400 MHz, CDCl₃) δ 3.57-3.69 (m, 44H), 2.75 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ72.4, 70.4, 70.2, 61.6. IR 3375, 2870, 1636, 1457, 1350, 1297, 1249, 1107, 951, 845, 735, 559 cm⁻¹.

DBU/PEG₆₀₀ + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.59-3.70 (m, 53H), 3.29 (t, ³*J* = 5.6 Hz, 2H), 3.20-3.24 (m, 4H), 2.46 (s, 2H), 1.78-1.84 (m, 2H), 1.65 (s, 4H), 1.57 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ 164.6, 157.7, 77.2, 72.0, 69.8, 69.6, 63.5, 60.6, 53.3, 47.9, 38.4, 32.1, 28.5, 26.5, 23.8, 19.4. IR 3350, 2867, 2361, 2343, 1647, 1613, 1456, 1351, 1315, 1291, 1250, 1110, 993, 953, 885, 837, 731, 694, 546, 526 cm⁻¹.

TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene):

¹H NMR (400 MHz, CDCl₃) δ 3.29 (t, ³*J* = 5.6 Hz, 4H), 3.24 (t, ³*J* = 6 Hz, 4H), 1.96 (m, 4H); ¹³C NMR (100.6 MHz, CDCl₃) δ 151.2, 46.6, 38.0, 20.7. IR 3477, 3418, 3234, 3157, 2967, 2943, 2875, 2797, 2749, 2361, 2343, 1662, 1573, 1477, 1445, 1421, 1378, 1321, 1295, 1202, 1069, 884, 711, 671, 590 cm⁻¹.

TBD/PEG₆₀₀ + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.56-3.68 (m, 62H), 3.21-3.27 (m, 8H), 1.91-1.97 (m, 4H); ¹³C NMR (100.6 MHz, CDCl₃) δ 158.8, 150.7, 77.2, 72.0, 69.9, 69.7, 64.0, 60.7, 46.2, 37.0, 20.3. IR 3308, 3160, 2869, 2362, 1943, 1667, 1574, 1456, 1377, 1350, 1323, 1291, 1252, 1203, 1107, 951, 844, 745, 730, 714 cm⁻¹.

DBN (1,5-diazabicyclo[4.3.0]non-5-ene):

¹H NMR (400 MHz, CDCl₃) δ 3.28 (t, ³*J* = 4.8 Hz, 2H), 3.21 (t, ³*J* = 6.8 Hz, 2H), 3.13 (t, ³*J* = 6 Hz, 2H), 2.38 (t, ³*J* = 7.6 Hz, 2H), 1.83-1.91 (m, 2H), 1.70-1.76 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ 160.5, 51.2, 43.8, 42.8, 31.3, 20.6, 19.4. IR 3409, 2929, 2845, 1651, 1496, 1422, 1363, 1288, 1232, 1195, 1133, 1051, 961, 903, 737, 677, 574 cm⁻¹.

DBN/PEG₆₀₀ + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.58-3.72 (m, 58H), 3.31 (t, ³*J* = 5.6 Hz, 2H), 3.26 (t, ³*J* = 6.4 Hz, 2H), 3.17 (t, ³*J* = 6 Hz, 2H), 2.45 (t, ³*J* = 8 Hz, 2H), 1.88-1.95 (m, 2H), 1.74-1.80 (m, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ 162.8, 157.6, 77.2, 72.0, 69.8, 69.5, 63.4, 60.4, 52.0, 41.9, 38.6, 29.4, 18.5, 18.3. IR 3394, 2870, 2361, 2342, 1681, 1651, 1457, 1350, 1291, 1251, 1107, 952, 837, 747, 730, 698 cm⁻¹.

TMG(tetramethylguanidine):

¹H NMR (400 MHz, CDCl₃) δ 5.01 (s, 1H), 2.70 (s, 12H); ¹³C NMR (100.6 MHz, CDCl₃) δ 167.9, 39.3. IR 3420, 3334, 3000, 2942, 2845, 2789, 2360, 2341, 1599, 1494, 1458, 1425, 1409, 1382, 1255, 1198, 1145, 1058, 1010, 892, 779, 734, 562, 544 cm⁻¹.

TMG/PEG₆₀₀ + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.55-3.69 (m, 60H), 2.71 (s, 12H); ¹³C NMR (100.6 MHz, CDCl₃) δ 163.6, 157.4, 77.2, 72.1, 69.9, 69.7, 63.4, 60.6, 38.9. IR 3393, 2870, 2361, 2343, 1647, 1472, 1457, 1351, 1277, 1251, 1108, 952, 838, 749 cm⁻¹.

DMICH(N-(1,3-dimethylimidazolidin-2-ylidene)cyclohexanamine):

¹H NMR (400 MHz, CDCl₃) δ3.38–3.43 (m, 1H), 3.11 (s, 4H), 2.76 (s, 6H), 1.15–1.72 (m, 10H); ¹³C NMR (100.6 MHz, CDCl₃) δ 155.4, 54.0, 44.9, 36.5, 31.3, 25.8, 25.2.

DMICH/PEG₆₀₀ + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.56-3.69 (m, 56H), 3.34-3.39 (m, 1H), 3.17 (s, 4H), 2.79 (s, 6H), 1.54-1.73 (m, 5H), 1.13-1.41 (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃) δ 157.5, 157.3, 124.4, 77.2, 72.3, 70.2, 70.0, 63.6, 61.1, 54.1, 59.2, 44.7, 36.1, 35.0, 34.9, 25.1, 18.0. IR 3393, 2922, 2867, 2361, 2342, 1653, 1635, 1472, 1456, 1350, 1279, 1256, 1109, 1035, 952, 890, 847, 763, 729, 698 cm⁻¹.

NH₂PEG₁₅₀NH₂:

¹H NMR (400 MHz, CDCl₃) δ 3.47 (s, 4 H), 3.35 (t, ³*J* = 5.2 Hz, 4 H), 2.71 (t, ³*J* = 5.2 Hz, 4 H), 1.17 (s, 1 H); ¹³C NMR (100.6 MHz, CDCl₃) δ 73.2, 70.0, 41.5. IR 3393, 2869, 1576, 1473, 1375, 1352, 1307, 1114, 817 cm⁻¹.

NH₂PEG₁₅₀NH₂/PEG₁₅₀(molar ratio: 1: 2) + CO₂:

¹H NMR (400 MHz, CDCl₃) δ 3.72 (t, ³*J* = 4 Hz, 12H), 3.66 (s, 8H), 3.59-3.62 (m, 12H), 3.54 (t, ³*J* = 4.8 Hz, 2H), 3.26 (s, 1H), 2.89 (s, 2H); ¹³C NMR (100.6 MHz, CDCl₃) δ 162.8, 72.3, 69.8, 68.2, 60.7, 40.9, 39.3. IR 3365, 2870, 2361, 2342, 1576, 1558, 1473, 1457, 1350, 1311, 1117, 1078, 936, 888, 821, 748 cm⁻¹.

1,3-Dipropyl urea:

¹H NMR (300 MHz, CDCl₃) δ 4.90 (bd, N-H), 3.08 (t, ³*J* = 6.45 Hz, 4H), 1.41-1.54 (m, 4H), 0.89 (t, ³*J* = 7.5 Hz, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 158.8, 42.1, 23.4, 11.3.

1,3-Diisopropyl urea:

¹H NMR (300 MHz, CDCl₃) δ 3.80-3.87 (m, 2H), 1.14 (d, ³J = 6.4 Hz, 12H); ¹³C NMR (75.5 MHz, CDCl₃) δ 157.0, 42.2, 23.5.

1,3-Dibutyl urea:

¹H NMR (400 MHz, CDCl₃) δ 4.77 (s, 2 H), 3.12-3.13 (m, 4H), 1.42-1.49 (m, 4H), 1.28-1.37 (m, 4H), 0.91 (t, ³J = 7.2 Hz, 6H); ¹³C NMR (100.6 MHz, CDCl₃) δ 158.7, 40.2, 32.3, 20.0, 13.7.

1,1,3,3-Tetrabutyl urea:

¹H NMR (300 MHz, CDCl₃) δ 2.56 (t, ³*J* = 7.2 Hz, 8H), 1.36-1.49 (m, 8H), 1.24-1.33 (m, 8H), 0.87 (t, ³*J* = 7.2 Hz, 12H); ¹³C NMR (75.5 MHz, CDCl₃) δ 164.3, 49.7, 32.2, 20.5, 13.9.

Octahydro-benzoimidazol-2-one:

¹H NMR (300 MHz, D₂O) δ 3.12-3.32 (m, 2H), 1.53-1.60 (m, 4H), 1.15-1.35 (m, 4H); ¹³C NMR (75.5 MHz, D₂O) δ 164.1, 53.3, 32.2, 24.2.

1-Ethyl-2-phenylaziridine:

¹H NMR (400 MHz, CDCl₃) δ 7.18-7.31 (m, 5H), 2.44 (q, ³*J* = 9.6 Hz, 2H), 2.30 (dd, ³*J* = 4.4 Hz, ³*J* = 4.8 Hz, 1H), 1.89 (d, ²*J* = 4.4 Hz, 1H), 1.65 (d, ²*J* = 8.8 Hz, 1H), 1.17 (t, ³*J* = 9.6 Hz, 3H); ESI-MS calcd for C₁₀H₁₃N 147.10, found 148.31 [M + H]⁺.

1-Propyl-2-phenylaziridine:

¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, ³*J* = 10.0 Hz, 3H), 1.60-1.67 (m, 3H), 1.89 (d, ²*J* = 4.0 Hz, 1H), 2.24-2.33 (m, 2H), 2.43-2.51 (m, 1H), 7.18-7.31 (m, 5H); ESI-MS calcd for C₁₁H₁₅N 161.12, found 162.28 [M + H]⁺.

2-(4-Chlorophenyl)-1-ethylaziridine:

¹H NMR (300 MHz, CDCl₃) δ 1.18 (t, ³*J* = 6.9 Hz, 3H), 1.65 (d, ²*J* = 6.6 Hz, 1H), 1.83 (d, ²*J* = 3.3 Hz, 1H), 2.25-2.46 (m, 3H), 7.15-7.23 (m, 4H); ESI-MS calcd for C₁₀H₁₂NCl 181.66, found 182.13 [M + H]⁺.

2-(4-Methylphenyl)-1-ethylaziridine:

¹H NMR (400 MHz, CDCl₃) δ 1.19 (t, ³*J* = 7.2 Hz, 3H), 1.62 (d, ²*J* = 6.4 Hz, 1H), 1.86 (d, ²*J* = 3.2 Hz, 1H), 2.26 (dd, ³*J* = 3.6 Hz, ³*J* = 3.2 Hz, 1H), 2.31 (s, 3H), 2.37-2.48 (m, 2H), 7.09-7.15 (m, 4H); ESI-MS calcd for C₁₁H₁₅N 161.24, found 162.20 [M + H]⁺.

3-Ethyl-5-phenyloxazolidin-2-one:

Colorless liquid; ¹H NMR (300 MHz, CDCl₃) δ 1.17 (t, ³*J* = 7.2 Hz, 3H), 3.29-3.45 (m, 3H), 3.92 (t, ³*J* = 8.7 Hz, 1H), 5.48 (t, ³*J* = 7.8 Hz, 1H), 7.34-7.42 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 12.4, 38.8, 51.5, 74.2, 125.4, 128.6, 128.8, 138.8, 157.5; ESI-MS calcd for C₁₁H₁₃NO₂ 191.09, found 192.29 (M + H)⁺, 214.38 (M + Na)⁺, 405.01 (2 M + Na)⁺.

3-Ethyl-4-phenyloxazolidin-2-one:

Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (t, ³*J* = 7.2 Hz, 3H), 2.79-2.88 (m, 1H), 3.48-3.57 (m, 1H), 4.10 (t, ³*J* = 8.0 Hz, 1H), 4.62 (t, ³*J* = 8.8 Hz, 1H), 4.81 (t, ³*J* = 7.2 Hz, 1H), 7.30 7.44 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 12.1, 36.8, 59.3, 69.7, 126.9, 129.0, 129.2, 137.8, 158.1; ESI-MS calcd for C₁₁H₁₃NO₂ 191.09, found 192.29 (M + H)⁺, 214.38 (M + Na)⁺, 405.01 (2M + Na)⁺.

3-Propyl-5-phenyloxazolidin-2-one:

Colorless liquid; ¹H NMR (300 MHz, CDCl₃) δ 0.91 (t, ³*J*=7.2 Hz, 3H), 1.52-1.61 (m, 2H), 3.18-3.31 (m, 2H) 3.40 (t, ³*J*=8.0 Hz, 1H), 3.90 (t, ³*J*=8.8 Hz, 1H), 5.46 (t, ³*J*=8.0 Hz, 1H), 7.31-7.37 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 10.7, 20.3, 45.5, 51.8, 74.0, 125.2, 128.4, 128.5, 138.7, 157.6; ESI-MS calcd for C₁₂H₁₅NO₂ 205.11, found 206.30 (M + H)⁺, 228.30 (M + Na)⁺, 433.04 (2M + Na)⁺.

3-Ethyl-5-(4-chlorophenyl)oxazolidin-2-one:

White solid; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (t, ³*J*=7.3 Hz, 3H), 3.30-3.43 (m, 2H), 3.69-3.76 (m, 1H), 3.92 (t, ³*J*=8.7 Hz, 1H), 5.44 (t, ³*J*=8.0 Hz, 1H), 7.27-7.38 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 12.6, 38.9, 51.5, 73.6, 126.9, 129.1, 134.7, 137.4, 157.4; ESI-MS calcd for C₁₁H₁₂ClNO₂ 225.67, found 451.64 (2M + H)⁺.

3-Ethyl-5-p-tolyloxazolidin-2-one:

White solid; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (t, ³*J*=7.3 Hz, 3H), 1.62 (d, ³*J*=6.4 Hz, 1H),1.87 (d, ³*J*=3.2 Hz, 1H), 2.27 (dd, ³*J*=6.6 Hz, ²*J*=3.2 Hz, 1H), 2.31 (s, 3H), 2.36-2.48 (m, 2H), 7.09- 7.15 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 12.6, 21.2, 38.9, 51.6, 74.3, 125.6, 129.5, 135.8, 138.7, 157.7; ESI-MS calcd for C₁₂H₁₅NO₂ 205.25, found 206.45 (M + H)⁺, 411.15 (2M + H)⁺.

3. Reference

(1) Gansow, O. A.; Kausar, A. R.; Triplett, K. B. J. Heterocyclic Chem. 1981, 18, 297.

(2) Du, Y.; Wu, Y.; Liu, A.-H. and He, L.-N. J. Org. Chem. 2008, 73, 4709.

4. The ¹H NMR and ¹³C NMR Charts, IR spectra for the absorption system, amidinium/guanidinium alkylcarbonate salts, urea and oxazolidinones

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2011

IR spectrum of PEG₆₀₀:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of DBU/PEG₆₀₀ + CO₂:

150

0

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of TBD:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of DBN:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of DBN/PEG₆₀₀ + CO₂:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of TMG:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of TMG/PEG₆₀₀ + CO₂:

IR spectrum of DMICH/PEG₆₀₀ + CO₂:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of NH₂PEG₁₅₀NH₂:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

IR spectrum of NH₂PEG₁₅₀NH₂/PEG₁₅₀ (molar ratio: 1: 2) + CO₂:

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2011

1,3-Dipropyl urea:

N

¹H NMR (CDCl₃, 300 MHz)

1,3-Diisopropyl-urea:

Ň Ň

¹H NMR (CDCl₃, 300 MHz)

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

¹H NMR (CDCl₃, 300 MHz)

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

Octahydro-benzoimidazol-2-one:

¹H NMR (D₂O, 300 MHz)

