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Supplementary Figures 

 

 

 

 

 

 

 

 

 

Fig. S1. XRD patterns of the as-obtained oxide NWs. The Cu2O phase appearing in 
the XRD pattern of CuO is believed to exist as a thin film precursor for growing CuO 
NWs during the oxidation of Cu plate.1,2 

 
 

 

 

 

 

 

 

 

 

Fig. S2. AFM image of the as-obtained GO platelets. Inset is depth profile of the line 

of interest on the GO platelets, the height difference between two arrows is about 1nm, 

indicating a single layer GO sheet. 
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Fig. S3. Low-magnification SEM images of the SnO2 NWs: (a) before, and (b) after 

graphene coating. (c) Raman spectra of the products at different steps, corresponding 

to the scheme illustrated in Fig.1c. 

 

 

 

 

Fig. S4. Raman mapping images of the D and G bands of graphene for different 

individual graphene@SnO2 NWs, revealing the full coverage along the SnO2 NW. 

Insets in Fig. S4a and S4c show the optical images of the selected graphene@SnO2 

NWs. 
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Fig. S5. Raman mapping images of the D and G bands of graphene for different 

single graphene@CuO NWs. Insets in Fig. S5a and S5c show the optical images of 

the selected graphene@CuO NWs. 
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Fig. S6. Low-magnification SEM images of porous CoO NWs: (a) before and (b) 

after graphene coating. Insets in Fig. S6a and S6b are corresponding high-

magnification SEM images. All the low- and high-magnification SEM images don’t 

show noticable changes after graphene coating. (c - d) Raman mapping images of the 

D and G bands of graphene for a single graphene@CoO NW, affirming the existence 

of graphene shell. Inset in Fig. S6c shows the optical image of the selected 

graphene@CoO NW. (e) TEM image of a single graphene@CoO NW, displaying a 

thin graphene layer. 
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Fig. S7. SEM images of the as-obtained -Fe2O3 precursor, revealing a highly 

ordered stacking fashion. 

 

 

 

 

 

 

 

 

 

Fig. S8.  XRD pattern of the as-prepared -Fe2O3 NPs (JCPDS 33-0664). 
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Fig. S9. SEM images of the as-obtained -Fe2O3 NPs, showing high uniformity. 

 

Fig. S10. FT-IR spectra of GO and GO@-Fe2O3. Compared with pure GO, the 

epoxy C-O stretch at 1220 cm-1 disappears in the FT-IR spectrum of GO@-Fe2O3. 

As GO contains reactive epoxy groups, its exposure to amine groups could lead to a 

ring-opening reaction, creating new C-N and O-H bonds.3 An appearance of a new 

peak at 1510 cm-1, which corresponds to a stretching of the new C-N bonds and 
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possibly remaining PAH, is observed in the FT-IR spectrum of GO@-Fe2O3. 

Meanwhile, the intensity of the vibrations at 1385 cm-1 corresponded to O-H bending 

from hydroxyl groups is increased for GO@-Fe2O3. All these observations are quite 

supportive of the ring-opening reaction between the epoxy and amine groups. In 

addition, the intensity of C=O stretches significantly decrease for GO@-Fe2O3. This 

could be interpreted as evidence that carboxylic acid groups interact with amine 

groups.4 
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