Supporting Information

CO₂ capture and conversion using Mg-MOF-74 prepared by sonochemical method

Da-Ae Yang, Hye-Young Cho, Jun Kim, Seung-Tae Yang and Wha-Seung Ahn*

Department of Chemical Engineering, Inha University, Incheon, Republic of Korea 402-751

Table S1. Elemental analysis of Mg-MOF-74(S) after sequential washing/activation steps

	As syn.	After DMF washing	After 3 d solvent exchange [*] and evacuation ^{**}
N	7.1	6.7	0.0
Н	4.3	4.2	1.0
С	41.1	42.1	51.5

* Methanol was used for solvent exchange, ** Evacuation at 523 K for 6 h under vacuum.

Fig. S1. Powder XRD patterns of the Mg-MOF-74 corresponding to the samples obtained at various (a) sonication power levels, (b) sonication times, and (c) amounts of TEA.

Fig. S2. CO₂ adsorption isotherms of Mg-MOF-74(C) at 273 and 298 K.

Fig. S3. FT-IR spectra of the cycloaddition product (4-phenyl-1,3-dioxolan-2-one).

Fig. S4. ¹H NMR spectra of the product 4-phenyl-1,3-dioxolan-2-one [spectral characterizations were obtained as follows: CDCl₃, 400 MHz, δ (ppm) 4.34 (t, *J*=8.2 Hz, 1H). 4.80 (t, *J*=8.4 Hz, 1H), 5.68 (t, *J*=8.0 Hz, 1H), 7.35-7.45 (m, 5H)].

Fig. S5. X-ray powder diffraction patterns of Mg-MOF-74 after catalytic reuses.

Fig. S6. Cycloaddition of CO₂ to styrene oxide over Mg-MOF-74(S): (\blacksquare) with fresh Mg-MOF-74(S) and (\Box) filtrate (catalyst filtered-off after 0.5 h reaction).