Supplementary information:

High Thermoelectric Figure of Merit in Nanostructured *p*-type PbTe-MTe (M = Ca, Ba)

Kanishka Biswas,^{*a*} Jiaqing He, ^{*a*, *b*} Guoyu Wang,^{*c*} Shih-Han Lo,^{*b*} Ctirad Uher,^{*c*} Vinayak P. Dravid^{*b*} and Mercouri G. Kanatzidis^{*a*, *}

^aDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208, USA

^bMaterials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA

^cDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

*E-mail: m-kanatzidis@northwestern.edu

Fig. S1 Temperature dependent (a) Hall coefficient and (b) hole mobility data (log-log scale plot) of PbTe-CaTe samples doped with 1 % Na₂Te and a control sample, PbTe doped with 1 % Na₂Te. Decrease in the mobility was observed at ~450 K due to transition to the transition to the heavy hole valance band.

Fig. S2 Temperature dependent thermal diffusivity data of all the PbTe-CaTe and PbTe-BaTe samples doped with 1% Na₂Te. Thermal diffusivities were measured using laser flash diffusivity method in a Netzsch LFA-457.

Fig. S3 Temperature dependent heat capacity, C_p , of all the PbTe-CaTe and PbTe-BaTe samples doped with 1% Na₂Te. C_p was indirectly derived using standard sample (pyroceram 9606) in the range 300-825 K at time of diffusivity measurement in a Netzsch LFA-457. Cooling cycle heat capacity data was obtained by the linear fitting of heating cycle heat capacity data with respect to the temperature. C_p values are having close match with the literature reported value for pure PbTe.^{1, 2}

References

- (1) R. Blachnik, R., Igel, Z. Naturforsch. B, 1974, 29, 625.
- (2) Z. H., Dughaish, *Physica B*, 2002, **322**, 205.