Electronic Supplementary Information

for

Catalytic application of shape-controlled Cu₂O particles protected by Co₃O₄ nanoparticles for hydrogen evolution from ammonia borane

Yusuke Yamada,*^a Kentaro Yano^a and Shunichi Fukuzumi*^{a,b}

^a Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan. Fax: +81-6-6879-7370; Tel: +81-6-6879-7368; E-mail: fukuzumi@chem.eng.osaka-u.ac.jp ^b Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.

Fig. S1 Powder X-ray diffraction pattern of Cu_2O before and after ammonia borane hydrolysis. (a) after reaction and (b) before reaction. Numbers in parenthesis indicates the (*hkl*) index. After reaction, Cu_2O is reduced to Cu metal.

Fig. S2 XPS spectra of $Cu_2O@SiO_2$. (a) Si 2p region and (b) Cu 2p region. The atomic ratio of Si vs Cu calculated from peak intensities was 94 vs 6. The ratio has not changed before and after reaction.

Fig. S3 SEM images of Cu₂O (50 facets)-Co₃O₄(plate) composites.

Fig. S4 Time course of hydrogen evolution by ammonia borane hydrolysis with shape-controlled Cu₂O particles decorated with Co₃O₄ rods (black open circle, 50-facet; red closed square, cube; blue closed triangle, octahedron; green closed diamonds, RCO). [NH₃BH₃ = 0.5 mmol, Cu₂O-Co₃O₄ [1/5 (w/w)] = 12 mg, water = 20 mL, 293 K].

Fig. S5 Time course of hydrogen evolution by AB hydrolysis with Cu₂O particles (50-facets) partially covered with shape-controlled Co_3O_4 (black, sphere; red, nanoplate; blue, rod) at room temperature (NH₃BH₃, 0.5 mmol; catalyst, 12 mg; water, 20 mL). The ratios of Cu₂O/Co₃O₄ (w/w) were 1/1.