Electronic Supplementary Information Two Dimensional Graphene/SnS₂ Hybrids with Superior Rate Capability for Lithium ion Storage

Bin Luo,^a Yan Fang,^a Bin Wang,^a Jisheng Zhou,^b Huaihe Song,^b and Linjie Zhi^{*a}

^a National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, 100190, Beijing, P.R. China. Fax: +86 10 82545578; Tel: +86 10 82545578; E-mail: <u>zhilj@nanoctr.cn</u>

^b State key laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P.R. China.

Experimental details:

Material Synthesis: Graphene oxide (GO) was synthesized from natural graphite (300 µm, Qingdao Graphite Company) by a modified Hummers method [1]. Graphene supported SnO₂ nanoparticles (G-SnO₂) were prepared by a controllable hydrolyzation process of tin salts in a GO containing ethylene glycol (EG)-water solution. In a typical experiment, as-synthesized graphene oxide (50 mg) was firstly suspended in a 100 mL of mixture of EG and water (10 mL of water contained) that was hosted in a round-bottom flask, and then ultrasonically treated for 1 h, forming a brown dispersion. Then 0.5 g of SnCl₂ • 2H₂O (dissolved in 10 mL of EG) was added to the obtained GO solution. After magnetic stirring for 20 min, the solution was heated to 120 °C and refluxed for 2 h with constant stirring under atmospheric pressure. After filtration and desiccation, the resultant black solid product was placed in a horizontal quartz tubular reactor, and heated to 500 °C at 10 °C min⁻¹ in Ar (99.999 %) atmosphere with a flow rate of 200 sccm. To improve the crystallinity of SnO₂ in G-SnO₂, the product was firstly annealed at 500 °C for 2 h in Ar atmosphere. Subsequently, gas mixture of H₂S and Ar (Volume ratio: 1:19) were introduced in turn with a flow rate of 200 sccm when the furnace was cooled down to 300 $^{\circ}$ C, and kept these conditions for 2 hours. Finally the system was cooled down to room temperature in Ar atmosphere. To investigate the effect of the pre-annealing treatment and flow rate of H₂S/Ar gas on the morphologies of SnS₂, the

same process was used except adjusting the corresponding parameters. For comparison, bare SnS_2 was prepared by the same procedure but without the presence of GO in the first step.

Material Characterization: X-ray diffraction (XRD) with Cu Kα radiation (Rigaku D/max-2500B2+/PCX system) was used to determine the phase composition and the crystallinity. The morphology and microstructure of the samples were investigated by FE-SEM (Hitachi S4800), FE-TEM (FEI Tecnai G2 20 ST), and TGA (Perkin Elmer, Diamond TG) measurements. Nitrogen sorption isotherms and BET surface area were measured at 77 K with a ASAP 2020 physisorption analyzer (USA). The Raman spectra were obtained on a Renishaw Micro-Raman Spectroscopy System with excitation from an argon ion laser (514 nm). Fourier-trans-form infrared (FT-IR) spectra were recorded by a Perkin-Elmer Spectrum One FTIR Spectrometer.

Electrochemical cycling tests were performed with coin-type half-cells (2032 size). The working electrode was made from the G-SnS₂ active material, super P carbon black, and a polyvinylidene fluoride (PVDF) binder in a weight ratio of 80:10:10 on a copper foil. The mass of the active material in each half-cell is about 2-3 mg. The electrolyte was 1M LiPF₆ with 1:1 ethylene carbonate: diethylene carbonate (EC: DEC), and the counter and reference electrodes were made from lithium foil. The cycle-life of the cells was tested at different rates within a fixed voltage window of 1.3 V-5 mV. The rate capability was evaluated by varying the discharge rate from 100 mA g⁻¹ to 6400 mA g⁻¹. Cyclic voltammetry was performed to examine the cathodic reaction (reduction) and the anodic reaction (oxidation) in the voltage range of 2.5-0 V (versus Li/Li⁺), at a sweep rate of 0.1 mV s⁻¹.

Figure S1. FT-IR spectra for graphene oxide (GO), graphene supported SnO_2 nanoparticles (G-SnO₂) and graphene supported SnS_2 nanoplates (G-SnS₂).

Figure S1 shows FT-IR spectra of graphene oxide (GO), graphene supported SnO₂ nanoparticles (G-SnO₂) and graphene supported SnS₂ nanoplates (G-SnS₂). The two bands of GO appearing at 1050 cm⁻¹ and 1720 cm⁻¹ are due to the epoxide and carboxyl functional moieties, respectively. This result clearly reveals that functional groups are introduced into carbon frameworks upon oxidation. However, in case of G-SnO₂, epoxide and carboxylate functional groups almost disappear, indicating that GO has been reduced by the solution process. The broad band around 670 cm⁻¹ is associated with the anti-symmetric O-Sn-O stretching mode, clarifying that SnO₂ particles exist within the graphene-based matrices. After the heat treatment in H₂S/Ar, disappearing of the broad band around 670 cm⁻¹ confirmed the totally conversion of SnO₂ nanoparticles to SnS₂ nanoplates.

Figure S2. Energy-dispersive X-ray (EDX) spectrum of G-SnS₂.

Figure S3. Comparison of XRD patterns of (a) G-SnS₂, (b) G-SnO₂-SnS₂ (sample collected during the second step), (c) Annealed G-SnO₂, (d) Unannealed G-SnO₂, and (e) GO.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2011

Electronic Supplementary Information for Energy & Environmental Science

Figure S4. TEM images of (a, b) unannealed G-SnO₂, and (c, d) annealed G-SnO₂.

Figure S5. TEM images of $G-SnS_2-SnO_2$ (samples collected after heat treatment in H₂S/Ar for 1 hour)

Figure S6. Cyclic voltammograms for G-SnS₂-S electrode, cycled between 0.05V and 2.5V at a scan rate of 0.01mV/s.

Figure S6 shows the Cyclic Voltammograms (CV) for the first ten cycles at a scan rate of 0.01mVs^{-1} in the potential window of 0.05V-2.5V. Specifically, several reduction peaks are observed in the first cathodic scan. Two broader peaks were present at about 1.25 V and 1.1 V in the first potential sweeping process. The cathodic peak at 1.25 V, observed during the first sweep, was assigned to the decomposition of the SnS₂ into metallic tin and Li₂S, and the formation of solid electrolyte interface (SEI), which should be responsible for the first irreversible capacity loss. The third dominant peak between 0.6 and 0 V is known to arise from the formation of Li_xSn alloys. The additional peaks at ~1.6 and ~1.9V were attributed to the lithium intercalation of the SnS₂ layers without phase decomposition, which were also partly responsible for the high initial discharge capacities.

Figure S7. Thermal analysis (by TGA and DTA) of as-prepared G-SnS₂-M hybids. The SnS₂ content estimated from the thermal analysis was ca. 95.0 wt % (Note: SnS₂ had been oxidized into SnO₂). The analysis was taken in air using a heating rate of 10°C min⁻¹. The weight loss from room temperature to 200°C was due to the removal of physisorbed and chemisorbed water.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is © The Royal Society of Chemistry 2011

Electronic Supplementary Information for Energy & Environmental Science

Figure S8. Nitrogen adsorption-desorption isotherms and pore-size distribution of as-prepared G-SnS₂-L (a, b), G-SnS₂-M (c, d) and G-SnS₂-S (e, f), respectively.

Table S1. Size distribution of SnS_2 nanoplates of three typical G-SnS₂ samples obtained at different Experimental conditions.

	Experimental conditions		Size distribution of SnS ₂ nanoplates	
Samples	Pre-annealing	Flow rate of H ₂ S/Ar	Diameter	Calculated
	treatment of G-SnO ₂	gas mixture	Diameter	thickness
G-SnS ₂ -S	with	400sccm	~100nm	~3.7nm
G-SnS ₂ -M	with	200sccm	~200nm	~6.9nm
G-SnS₂-L	without	200sccm	~500nm	~11.4nm

Samples	BET surface area m ² g ⁻¹	BJH adsorption cumulative	BJH adsorption average
		volume of pores	pore width
		cm ³ g ⁻¹	nm
G-SnS ₂ -S	35.3	0.060	6.1
G-SnS ₂ -M	47.2	0.259	18.6
G-SnS ₂ -L	84.1	0.562	22.5

Table S2. BET surface area, BJH adsorption cumulative volume of pores, and BJH adsorption average pore width of as-prepared G-SnS₂ samples.

The isotherm for G-SnS₂-L and G-SnS₂-M is characteristic of a type IV with a type H3 hysteresis loop, revealing that the material is composed of aggregates (loose assemblages) of sheet-like particles forming slit-like pores. Meanwhile, the isotherm for G-SnS₂-S with a Type H4 loops feature can be attributed to adsorption-desorption in narrow slit-like pores, which is in corresponding with our microscopy findings.

Supporting references

[1] W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339-1339.