Supporting Information

Quartz (SiO₂): a new energy storage anode material for Li-ion batteries

Won-Seok Chang¹, Cheol-Min Park², Jae-Hun Kim³, Young-Ugk Kim⁴, Goojin Jeong³

Hun-Joon Sohn¹†

¹Department of Materials Science and Engineering, Seoul National University, Seoul,

151-742, Korea

²School of Advanced Materials and System Engineering, Kumoh National Institute

of Technology, Gumi, 730-701, Korea

³Advanced Batteries Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816, Korea

⁴Development Team, Battery Business Division, Samsung SDI, Cheonan-si, 330-300, Korea

† To whom correspondence should be addressed. E-mail: hjsohn@snu.ac.kr

Supporting Figures

Figure S1. (a) XRD patterns of pristine, 12 h, 24 h and 36 h milled SiO₂. (b) FT-IR spectra of pristine, 12 h, 24 h and 36 h milled SiO₂.

Figure S2. (a) Ex-situ HRTEM image of 12 h milled sample.

(b) Ex-situ HRTEM image of 36 h milled sample.

Figure S3. Gas chromatography results. Relative abundance of oxygen in glove box and

the gas sample taken from 24 h milled sample vial were compared

Figure S4. *Ex-situ* HRTEM images at the 10th cycle.

samples)