Structure and decomposition of zinc borohydride ammonia adduct: Towards a pure hydrogen release

Qinfen Gu, ^{b, a} Liang Gao,^a Yanhui Guo,^a Yingbin Tan,^a Ziwei Tang,^a Kia S. Wallwork,^b Feiwu

Zhang,^c Xuebin Yu*^a

^a Department of Materials Science, Fudan University, Shanghai 200433, China

^b Australian Synchrotron, 800 Blackburn Rd, Clayton 3168, Australia

^cNanochemistry Research Institute, Perth 6845, Curtin University

Chemical formula	Zn2 B4 N4 H28	
Formula weight	258.272 g/mol	
Crystal system	monoclinic	
Space group	<i>P</i> 1 2 ₁ 1 (No. 4)	
Unit cell dimensions	a= 6.392(4) Å	α= 90°
	b= 8.417 (6) Å	β= 92.407(4) °
	c= 6.388(4) Å	γ=90°
Ζ	2	
Density (calculated)	1.24889 g/cm^3	
Volume	343.38(39) Å ³	
2theta, deg	$2\theta_{\min} = 3$	
	$2\theta_{\text{max}} = 83$	
Detector	Mythen-II, AS	
Wavelength	0.6190 Å	
R _B	0.025	
R _{wp}	0.048	
GoF	1.41	

Table S1. Experimental and crystallographic details for Zn(BH₄)₂·2NH₃

H1	0.73810	0.38360	0.21140
H2	0.54760	0.50990	0.21220
Н3	0.71230	0.49830	0.41410
H4	-0.11290	0.06460	0.75550
Н5	-0.13690	0.26000	0.92930
Н6	-0.32110	0.21670	0.69060
H7	-0.33050	0.09300	0.95690
H8	0.82800	0.93480	0.25730
Н9	0.60690	0.84080	0.27300
H10	0.79630	0.81030	0.44730
H11	0.89040	0.53570	-0.13290
H12	0.65740	0.59600	-0.31380
H13	0.75950	0.74840	-0.12020
H14	0.94380	0.68910	-0.34210
B15	-0.22750	0.15890	0.83380
B16	0.81360	0.64210	-0.22940
N17	0.69970	0.49070	0.25530
N18	0.76420	0.83270	0.29320
Zn19	0.12230	0.15590	0.88000

Table S2. Calculated structural parameters of the as-prepared $Zn(BH_4)_2 \cdot 2NH_3$.

Atoms		Bond distances (Å)	Atoms		Bond distances (Å)	
Zn19	H8	2.656	N17	H1	1.026	
	H2	2.591		H2	1.032	
	H1	2.657		H3	1.029	
	H10	2.590	N18	H8	1.027	
	H9	2.623		H9	1.028	
	H3	2.691		H10	1.030	
	H11	1.956	B15	H4	1.239	
	H13	1.897		H5	1.229	
	H4	1.887		H6	1.206	
	H5	1.955		H7	1.207	
	B15	2.281	B16	H11	1.230	
	B16	2.286		H12	1.208	
	N17	2.078		H13	1.237	
	N18	2.078		H14	1.208	

Table S3. Interatomic bond distances (Å) in the crystal structure of $Zn(BH_4)_2 \cdot 2NH_3$ derived from the DFT calculation.

Distance		Angle		Angle	
H1…H5	2.298	B15-H5…H1	124.91	H5…H1-N17	139.25
H2…H7	1.905	В15-Н7…Н2	103.02	H7…H2-N17	154.62
Н6…Н9	2.178	В15-Н6…Н9	122.90	H6…H9-N18	142.87
H3…H12	2.003	В16-Н12…Н3	111.92	H12…H3-N17	153.26
H8···H11	2.210	В16-Н11…Н8	117.02	H11…H8-N18	141.69
H10···H14	1.961	B16-H14…H10	105.83	H14…H10-N18	148.88

Table S4. Interatomic distances (Å) and Angles (°) for apparent dihydrogen Bonds in the calculated $Zn(BH_4)_2 \cdot 2NH_3$.

Figure S1. High-resolution XRD patterns of ZnCl₂·2NH₃.

Figure S2. Rietveld refinement profile for $Zn(BH_4)_2 \cdot 2(NH_3)$ phase showing observed (blue), calculated (red), difference (grey) plots. The position of Bragg reflections (tick marks) are shown for $Zn(BH_4)_2 \cdot 2(NH_3)$ (upper), LiCl (middle), and Zn (lower).

Figure S3. Laboratory XRD patterns of the post milled 1:2 $ZnCl_2/2LiBH_4$. The asterisks and pound sign indicate the position of diffraction peak arising from LiCl and Li₂ZnCl₄, respectively. According to the previous literature,^{S1} the ball milled product of $ZnCl_2/2LiBH_4$ turns out to be mixed-metal(Zn-Li) borohydride. So it is highly possible that the synthesis via $ZnCl_2/2LiBH_4$ should follow the pathway below:

 $3ZnCl_2+6LiBH_4 \rightarrow 2LiZn(BH_4)_3+2LiCl+Li_2ZnCl_4$

Figure S4. The TPD result of $Zn(BH_4)_2 \cdot (NH_3)_2$, which gave a release of 5.7 equiv. gas. By combination with the TG results, this 5.7 equiv. gas can be safely ascribed to the quantity of H₂.

Figure S5. The TPD results for $Zn(BH_4)_2 \cdot (NH_3)_2$ under 1 bar Ar and 5 bar H_2 atmosphere.

Figure S6. The ¹¹B NMR spectra of as-prepared $Zn(BH_4)_2 \cdot 2NH_3$ and the sample after heating to 100 °C. The heating rate was 10 °C min⁻¹.

Figure S7. The TPD and TG results for the $Zn(BH_4)_2 \cdot 6NH_3/2LiCl$. By combination of the TG and TPD results, the mole ratios of the H₂ and NH₃ in the total released gas are 81.6 and 18.4%, respectively.

Figure S8. The TPD and TG results for the $Zn(BH_4)_2 \cdot 2NH_3(2LiCl)/LiBH_4$. TG result shows that this sample gave a weight loss of 9.2 wt.% by 500 °C. From the TPD, the total gas released is 4.6 mol/g by 500 °C. It fairly confirms that only hydrogen is released for this sample by heating to 500 °C.

References:

(S1)Ravnsbaek, D.; Filinchuk, Y.; Cerenius, Y.; Jakobsen, H. J.; Besenbacher, F.; Skibsted, J.; Jensen, T. R. *Angew. Chem. Int. Ed.* **2009**, *48*, 6659.