Supporting Information for

High-Performance Flexible Lithium-Ion Electrodes Based on Robust Network Architecture

Xilai Jia,^{†,a,b} Zheng Chen,^{†,b} Arnold Suwarnasarn,^c Lynn Rice,^b Xiaolei Wang,^b Hiesang Sohn,^b Qiang Zhang,^a Benjamin M. Wu,^c Fei Wei^a* and Yunfeng Lu^{*,b}

^aBeijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China, E-mail: wf-dce@tsinghua.edu.cn; ^bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA, E-mail: luucla@ucla.edu; Department of Bioengineering, University of California, Los Angeles, CA 90095, USA. [†]Both authors contributed to this work equally.

Figure S1. (a) SEM image and digital photograph (inset) of pristine ultra-long CNT arrays. (b) Digital photograph of ultra-long CNT aerogels from gas sheering; inset shows a TEM image of a single CNT.

Figure S2. Schematic of mechanical testing on CNT/V_2O_5 composite electrode sheets (a) and (b) toughness of CNT/V_2O_5 composite electrodes.

As show in Figure S4 (a), the nanocomposite electrode will be stretched when a load is applied. The mechanical properties can be obtained by $\sigma = \frac{F}{S}$, *MPa* (stress) and $\varepsilon = \frac{l-l_o}{l_o} \times 100\%$ (strain), where F is the load, S is the cross-section area of the electorde; l_o is the initial length of the electrode between the load, and *l* is the length of the electrode under tension. After the mechanical test, we can get the stress-strain curves as Figure S4 (b). Then the toughness, which is the work needed to break the film electrode, can be obtained based on integral area under stress-strain curves. Take the 25% CNT/V₂O₅ as an example, the area under stress-strain curves is $5.1 \times \frac{F}{mm \cdot mm} \times \frac{1}{100}$, which gives a toughness of 5.1×10^4 J m⁻³.

Figure S3. (a) SEM image of a film made from pure V_2O_5 nanowires synthesized without using CNTs; TEM image (b) and SAED (c) of a single V_2O_5 nanowire.

Figure S4. XRD patterns of the CNTs, V_2O_5 nanowires and CNT/ V_2O_5 nanocomposite (25 wt-% CNTs).

Figure S5. Nitrogen sorption isotherms (a) and pore size distribution (b) of CNT/V_2O_5 nanocomposite electrode containing 25 wt-% of CNTs.

Figure S6. (a) A small disc-shape CNT/V_2O_5 nanocomposite electrode with 25 wt-% of CNTs. (b) The electrode was soaked in 37 wt-% HCl. The light-yellow color indicates the dissolution of V_2O_5 in the acid. (c) Digital photograph of the free-standing CNT sheets after dissolving V_2O_5 nanowires, maintaining its structure integrity.

Figure S7. The cross-section SEM image of a CNT/V_2O_5 composite made from short CNTs (25 wt-%) under the same synthetic condition.

Figure S8. The cycling stability of a CNT/V_2O_5 composite electrode at low current density of 0.25C.

Figure S9. Digital photograph (a) and cross-section SEM images (b and c) of a flexible V_2O_5/CNT electrode after lithilation.