Supporting information

Experimental

LiBH₄ (Acros, 95.0 %) NaBH₄ (Aldrich, 98.0 %), and FeCl₃ (Alfa Aesar, 98.0 %) were used without further purification. The borohydride hydrazinate complexes were synthesized by ball-milling borohydride and hydrazine in a certain ratio on a Retsch PM 400 planetary mill at 150 rpm under an inert atmosphere for 2h. The ball-to-sample weight ratio was about 30:1. We denote samples by $M(BH_4)_n \bullet xNH_2NH_2$, where x means the molar ratio of hydrazine to borohydride. Fe precursor (FeCl₃) was introduced into samples through ball milling at 150 ppm for 5h. To reduce the heat effect in milling, the mill was set to revolve for 2 min in one direction and pause 15 s, and then revolve in reversal direction. All the material handlings were performed inside an MBraun glovebox filled with purified argon. XRD characterizations were conducted on a PANalytical X'pert diffractometer (Cu $K\alpha$, 40kV, 40mA). To avoid sample contamination by air, the sample was sealed in a home-made sample holder covered by a piece of shielding film. Volumetric release measurements were performed on a home-made Sievert type apparatus to quantify the gas evolution. The gaseous products were introduced into a diluted sulphuric acid to detect NH₃ concentration from the change of conductivity of the acid solution described elsewhere^[S1]. XAFS and high-resolution XRD spectra were collected at BL14W1 beamline and BL14B1 beamline of Shanghai Synchrotron Radiation Facility, respectively. The ⁵⁷Fe Mössbauer spectra were recorded using a Topologic 500A spectrometer with a proportional counter described elsewhere^[S2]. ⁵⁷Co(Rh)

moving in a constant acceleration mode was used as the radioactive source. The Doppler velocity of the spectrometer was calibrated with respect to α -Fe. Samples were protected under Ar atmosphere during Mössbauer measurements. Self-made Fe₂N was prepared as reference material from nitridation of granular Fe₂O₃ in NH₃ by the temperature-programmed reaction method according to literature^[S3]. The synthesized Fe₂N was examined by XRD. Solid state ¹¹B MAS NMR experiments were carried out at room temperature on a Bruker AVANCE 500 MHz (11.7 T) spectrometer at a frequency of 128.3 MHz. The chemical shifts are referenced to BF₃OEt₂ at 0 ppm for ¹¹B nuclei. FTIR measurements were performed on a Varian 3100 unit. Raman spectra were obtained in a RENISHAW inVia Raman Microscope. The ratio of H₂ and N₂ was determined by a SHIMADZU GC-2014C gas chromatography. Differential scanning calorimeter (DSC) data were obtained from a SETARAM C80 thermal analysis system equipped with a closed sample cell.

Figure S1. XRD patterns of LiBH₄ complexed with hydrazine in different molar ratios.

Figure S2. XRD patterns of NaBH₄ complexed with hydrazine in a molar ratio of 1:1.

Figure S3. XRD patterns of $Mg(BH_4)_2$ complexed with hydrazine in a molar ratio of 1:2.

In all the cases, phases of pristine borohydrides were disappeared. Further structural identifications are undergoing for Mg and Na-based hydrazinates.

Figure S4. FTIR spectra of LiBH₄ complexed with hydrazine of different molar ratios.

Figure S5. Raman spectra of pristine LiBH₄ and LiBH₄ complexed with hydrazine.

Figure S6. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRD profiles for LiBH₄•NH₂NH₂ at 298 K (Cu Ka radiation). Vertical bars indicate the calculated positions of Bragg peaks.

Figure S7. Close contacts around the Li⁺ center in LiBH₄•NH₂NH₂

Ato	ms	Bond distance (A	Å) At	oms	Bond distance (Å)
H1··	·H4	2.323	B3	H15	1.231
H2··	·H8	2.100	B3	H16	1.225
Н3⊷	·H6	2.318	B3	H17	1.223
H5··	·H7	2.323	B3	H18	1.227
H9…	H10	2.318	B4	H19	1.217
H11··	·H12	2.066	B4	H20	1.228
H13··	·H14	2.066	B4	H21	1.226
Li1	B1	2.322	B4	H22	1.230
Li1	B2	2.437	N5	H23	1.030
Li2	B1	2.600	N5	H24	1.030
Li3	B2	2.334	N6	H25	1.025
Li1	N1	2.427	N6	H26	1.029
Li1	N3	2.131	N7	H27	1.027
Li2	N1	2.140	N7	H28	1.029
Li3	N4	2.215	N8	H29	1.036
N1	N2	1.447	N8	H30	1.031
N3	N4	1.452			

Table S1. Interatomic distances (Å) in crystal structure of LiBH₄•NH₂NH₂ at room temperature

Figure S8. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRD profiles for LiBH₄·2NH₂NH₂ at 298 K (λ=1.238Å).
Pattern also includes a small amount of LiBH₄·NH₂NH₂ phase. Vertical bars indicate the calculated positions of Bragg peaks of LiBH₄·2NH₂NH₂ and LiBH₄·NH₂NH₂ (from the top).

At	oms	Bond distance (Å)	Atoms	Bond distance (Å)	
Li1	N1	2.097	N3 N5	1.452	
Li1	N2	1.962	N3 H2	1.030	
Li1	N3	2.097	H1…H2	2.097	
Li1	N4	2.248	H1…H5	1.926	
B1	H1	1.231	H3···H4	2.163	
B 1	H3	1.234	H5…H7	2.397	
B 1	H6	1.230	Н6…Н9	1.940	
B1	H7	1.225	H7···H8	2.229	

Table S2. Interatomic distances (Å) in crystal structure of LiBH₄·2NH₂NH₂ at room

Figure S9. MS Results of gaseous products from volumetric release measurement on neat hydrazine at 140 °C.

Figure S10. MS Results of gaseous products from volumetric release measurement on $LiBH_4$ •2NH₂NH₂ at 140 °C.

Figure S11. ¹¹B MAS NMR spectrum of solid residue of post-140 °C decomposed LiBH₄•NH₂NH₂.

Figure S12. Volumetric release measurement on LiBH₄•1/3NH₂NH₂ at 140 °C.

Figure S13. MS results of gaseous products from volumetric release measurement on $LiBH_4$ •1/3NH₂NH₂ at 140 °C.

From Figure S11, a weak B-N species can be detected, which suggests the formation of H_2 is derived from the combination of H^{δ^-} (BH₄⁻) and H^{δ^+} (NH₂). We would like to point out that direct hydrogen release from LiBH₄-NH₃ under the same condition may be ruled out.^[S4]

Figure S14. Volumetric release measurements on the neat LiBH₄•NH₂NH₂ and the Fe-catalyzed LiBH₄•NH₂NH₂ samples at 250 °C.

As hydrazine has certain vapor pressure in the LiBH₄ hydrazinates, decomposition of the hydrazinates under a flow of argon will result in the substantial loss of NH₂NH₂ prior to the decomposition. We, therefore, conduct the decomposition in a closed vessel. The DSC measurement on the 2 mol% FeCl₃-doped LiBH₄•NH₂NH₂ was obtained in a closed cell. Notably, the practical tank for hydrogen production resembles the condition applied here.

Figure S15. DSC curve of the decomposition of 2 mol% FeCl₃-doped

 $LiBH_4 \bullet NH_2 NH_2.$

Figure S16. XRD patterns of post-300 °C dehydrogenated Fe-catalyzed LiBH₄•NH₂NH₂ sample.

Figure S17. FTIR spectrum of post- 300 °C dehydrogenated Fe-catalyzed LiBH₄•NH₂NH₂ sample.

Figure S18. Raman spectra of commercial BN and post-300 °C dehydrogenated Fe-catalyzed LiBH₄•NH₂NH₂ samples.

Figure S19. Fe K-edge XANES spectra of Fe foil, pristine FeCl₃, 5% FeCl₃-doped LiBH₄-NH₂NH₂, post-dehydrogenated 5% FeCl₃-doped LiBH₄•NH₂NH₂.

Figure S20. Fourier transform of Fe K-edge EXAFS of Fe foil, 5 mol% FeCl₃-doped LiBH₄-NH₂NH₂, post-dehydrogenated 5 mol% FeCl₃-doped LiBH₄-NH₂NH₂ and self-made Fe₂N.

Figure S21. ⁵⁷Fe Mössbauer spectra of 5.0 mol % FeCl₃-doped LiBH₄•NH₂NH₂ and 5.0 mol % FeCl₃-doped LiBH₄.

As illustrated in Figure S19, the Fe K-edge X-ray absorption near edge structure (XANES) spectra of the pre- and post-dehydrogenated FeCl₃-doped samples are similar to each other but different from the pristine FeCl₃ and resemble to that of Fe foil, indicating that Fe possesses a reduced state in these two samples. However, the Fourier transformed patterns (Figure S20) of these two samples are different from that of Fe foil. In our previous reports, FeCl₃ can be reduced by BH₃ group to amorphous Fe-B alloy with a chemical valence close to zero^[S1]. It was also reported that ferric or ferrous salts were easy to be reduced by BH₄⁻ to form amorphous Fe-B allov^[S5]. In this work, the peaks of Fourier transformed spectrum of pre- and post-dehydrogenated samples are close to that of FeB alloy reported^[S2] and are different from that of self-made Fe₂N. Thus, we believe that amorphous Fe-B allov is formed and functions as active center in the dehydrogenation process. The ⁵⁷Fe Mössbauer spectrum (Figure S21) of 5.0 % FeCl₃-doped LiBH₄•NH₂NH₂ illustrates an isomer shift (IS) at 0.17 mm s⁻¹, which is close to the IS of Fe₄₄Co₁₉B₃₇, Fe₆₂B₃₈ and Fe-B alloys in the references.^[S1,S2,S5] Moreover, the ⁵⁷Fe Mössbauer spectrum of LiBH₄ ball milled with 5.0 mol % FeCl₃ is similar to the 5.0 % FeCl₃-doped

LiBH₄•NH₂NH₂ sample, further evidencing the formation of Fe-B alloy (Figure S21 & Table S3).

Table S3. ⁵⁷Fe Mössbauer parameters of 5 mol % FeCl₃-doped LiBH₄•NH₂NH₂ and 5.0 mol % FeCl₃-doped LiBH₄.

Compasition	Oxidation	IS ^a	QS ^b	Spectral	Line-width ^d
Composition	state of Fe	(mm s ⁻¹)	(mm s ⁻¹)	area (%) ^c	(mm s ⁻¹)
5%FeCl ₃ -dopedLi	allar	0.17	0.65	100	0.53
$BH_4 \bullet NH_2 NH_2$	anoy				
5%FeCl ₃ -LiBH ₄	alloy	0.20	0.64	100	0.53

Figure S22. XRD patterns of partially decomposed product of LiBH₄•NH₂NH₂ at 140 °C compared with the self-made LiBH₄•NH₃ sample.

Figure S23. MS profiles of gaseous product from the Fe-catalyzed LiBH₄•NH₂NH₂ sample at elevating temperature.

References

- [S1] T. He, J. Wang, G. Wu, H. Kim, T. Proffen, A. Wu, W. Li, T. Liu, Z. Xiong, C.
 Wu, H. Chu, J. Guo, T. Autrey, T. Zhang, P. Chen, *Chem. Eur. J.* 2010, *16*, 12814-12817.
- [S2] T. He, J. Wang, T. Liu, G. Wu, Z. Xiong, J. Yin, H. Chu, T. Zhang, P. Chen, *Catal. Today* 2011, 170, 69-75.
- [S3] M. Zheng, X. Chen, R. Cheng, N. Li, J. Sun, X. Wang, T. Zhang, *Catal. Commun.* 2006, 7, 187-191.
- [S4] a) X. Zheng, G. Wu, W. Li, Z. Xiong, T. He, J. Guo, H. Chen, P. Chen, *Energy Environ. Sci.* 2011, *4*, 3593-3600; b) Y. Guo, G. Xia, Y. Zhu, L. Gao, X. Yu, *Chem. Commun.* 2010, *46*, 2599-2601.
- [S5] J. van Wonterghem, S. Morup, C. J. W. Koch, S. W. Charles, S. Wells, *Nature* 1986, 322, 622-623.