Electronic Supplementary Information for

Heteroepitaxial film silicon solar cell grown on Ni-W foils

Sung Hun Wee,^{*a*} Claudia Cantoni,^{*a*} Thomas R. Fanning,^{*b*} Charles W. Teplin,^{*c*} Daniela F. Bogorin,^{*a*} Jon Bornstein,^{*b*} Karen Bowers,^{*b*} Paul Schroeter,^{*b*} Falah Hasoon,^{*c*} Howard M. Branz,^{*c*} M. Parans Paranthaman,^{*a*} and Amit Goyal^{*a*}

> ^aOak Ridge National Laboratory, Oak Ridge, TN 37831, USA ^bAmpulse Corporation, Golden, CO 80401, USA ^cNational Renewable Energy Laboratory, Golden, CO 80401, USA

Numerical method for determining % cube of a cube-textured material

A (111) pole figure of a cube-textured material has four peaks:

$$\psi_1 = 54.7^\circ, \ \phi_1 = 45^\circ$$

 $\psi_2 = 54.7^\circ, \ \phi_2 = 135^\circ$
 $\psi_3 = 54.7^\circ, \ \phi_3 = 225^\circ$
 $\psi_4 = 54.7^\circ, \ \phi_4 = 315^\circ$

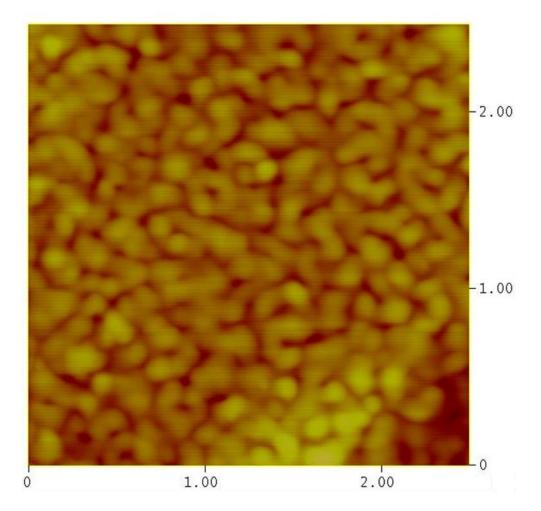
The total intensity in a pole figure is

$$I_{\text{total}} = \int_0^{\pi/2} d\psi \int_0^{\pi/2} d\phi \sin \psi \ I(\psi, \phi).$$

The cube-textured intensity is

$$I_{\text{cube}} = \sum_{i=1}^{4} \int_{0}^{\frac{\pi}{2}} d\psi \int_{0}^{\frac{\pi}{2}} d\phi \sin \psi \ I(\psi, \phi) N(\psi - \psi_{i}, \ \phi - \phi_{i}),$$

where,


$$N(\Delta\psi,\Delta\phi) = 1 \text{ if } \sqrt{\Delta\psi^2 + \Delta\varphi^2} < W$$

$$N(\Delta\psi,\Delta\phi) = 0$$
 otherwise.

We set $W = 15^{\circ}$.

The cube fraction is $I_{\text{cube}}/I_{\text{total}} \times 100$ (%).

Interface	ϵ_s without rotation	ϵ_s with rotation	Experimental rotation
NiW/Y ₂ O ₃	50.4%	6.4%	45°
Y ₂ O ₃ /YSZ	2.9%	31.3%	None
YSZ/CeO ₂	5.1%	25.7%	None
CeO ₂ /STO	27.8%	2.1%	45°
STO/ γ-Al ₂ O ₃	1.7%	43.9%	None
γ -Al ₂ O ₃ /Si	36.7%	3.3%	45°

Figure S1. AFM image $(2.5 \times 2.5 \ \mu\text{m}^2)$ for γ -Al₂O₃ top layer (100 nm) on STO (100 nm) / CeO₂ (60 nm) / YSZ (100 nm) / Y₂O₃ (80 nm) / Ni-5 at.% W (50 μ m). The RMS surface roughness is measured to have 3.26 nm.