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1 Model updates

A number of improvements were made to the scheduling and dispatch model used

in this study since the publication of [Hart and Jacobson(2011)]. These changes are

described below.

1.1 Wind Power Statistical Model

The statistical model for wind power employed in [Hart and Jacobson(2011)] relied

on the application of a power curve to simulated wind speeds at each site in order

to approximate the output of wind power from each farm. This model used a single

average wind speed at each time step for each site in order to reduce computational

complexity. This approximation was later found to overestimate the wind power

produced in aggregate, when compared to the predicted wind power output supplied

in the Western Wind Dataset [3TIER(2010)]. To improve the treatment of wind

power, an autoregressive-like model was developed for the forecast error of the total

aggregated wind power output (the sum of the power output reported for each site

in the dataset). In the updated model, the normalized aggregated wind power, g(t)

is approximated from the forecasted wind power, ĝ(t) according to:

g(t) = ĝ(t) + β [g(t− 1)− ĝ(t)] + ỹ (1)

where β is the autocorrelation coefficient of the input wind power signal and ỹ is

a random variable with a symmetrically truncated distribution based on a normal

distribution with mean 0 and variance σ2
g . The distribution is truncated in order to

ensure that g(t) is on the interval [0, 1]. This approach breaks down when one of
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the following inequalities holds:

ĝ(t) + β [g(t− 1)− ĝ(t− 1)] < 0 (2)

ĝ(t) + β [g(t− 1)− ĝ(t− 1)] > 1 (3)

If the first inequality holds, g(t) is set to 0 and if the second inequality holds, g(t)

is set to 1. In the kth realization, the available wind power, Pmax
w , is calculated

from the kth normalized wind power signal, g(k, t) and the installed capacity, W

according to:

Pmax
w (t) = W × g(k, t) (4)

Capping introduces a small bias in the final wind power signal. This bias is re-

moved by scaling all values of Pmax
w (k, t) by a constant so that the mean wind

power availability across all realizations and all times is equal to the mean fore-

casted wind power output. The input wind power signal (from the Western Wind

Dataset[3TIER(2010)]) is taken as the day-ahead forecasted wind power output.

The forecast error distribution produced by this method depends on the param-

eter, σg. In this analysis, both the wind and solar power forecasts are assumed to

have a 10% day-ahead RMS error. This is achieved for wind power by comparing the

RMS wind power error associated with 10GW of installed wind power for various

values of σg. This analysis (shown in Figure 1) yielded a value of σg ≈ 0.16.
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Figure 1 Wind power forecast error trials for determining σg. The value of σg is chosen so that the

RMS error of the day-ahead forecast is approximately 10%.
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1.2 Irradiance Statistical Model

The updated irradiance model assumes that the forecast error in the direct normal

irradiance, IDNI can be modeled by an autoregressive-like process:

IDNIi (t) = ÎDNIi (t) + κ
[
IDNIi (t− 1)− ÎDNIi (t− 1)

]
+ b̃i (5)

where ÎDNIi is the forecasted direct normal irradiance at site i, φ is the autocorrela-

tion coefficient, and b̃i ∼ N (0, σ2
DNI) are correlated random variables, based on the

site-site correlations present in the input dataset. Irradiance data from the National

Solar Radiation Database (NSRDB) [Wilcox and Marion(2007)] was used in this

analysis. At each time step, IDNIi (t) is capped so that it is necessarily non-negative.

After producing all realizations, IDNIi (t) is again capped so that it never exceeds the

maximum observed DNI in each hour of the year, based on data from 1991 to 2005.

The diffuse horizontal irradiance (DHI) is calculated directly from the DNI, as-

suming an affine relationship between the two variables that depends on the hour

of the year. Several plots of the DHI versus the DNI for given hours of the year

(over multiple years and multiple sites) indicated that the relationship is substan-

tially different in low- and high-DNI regimes and that the DHI peaks at some DNI,

separating the two regime (see Figure 2). The data is therefore separated into two

regimes in order to approximate the DHI:

IDHIi (t) =

{
c1(t)I

DNI
i (t) + b1(t) IDNIi (t) ≤ I∗(t)

c2(t)I
DNI
i (t) + b2(t) IDNIi (t) > I∗(t)

(6)

where t is the hour of the year; the fit parameters c1(t), c2(t), b1(t), and b2(t) are

selected using a least-squares fit to the data at all stations over the years 1991-2005;

and I∗(t) is the value of the DNI corresponding to the maximum DHI in hour t across

all years, which serves as an approximation for the boundary between the two DHI

regimes. The DHI is also capped between 0 and the maximum observed DHI in each

hour of the year over several years of NSRDB data to ensure reasonable values. An

example of the resulting fit function for the DHI is illustrated for 12:00pm on April

10th in Figure 2. Note that the data shown reflect only 2000-2005, but the fits used

in the simulations include years 1991-1999 as well.

With the DNI and the DHI, the global horizontal irradiance (GHI) can be ap-

proximated according to:

IGHIi (t) = IDNIi (t)sinβi(t) + IDHIi (t) (7)

where β is the solar altitude angle, a function of both location and time. Since

errors in the GHI are often reported, the GHI is used to choose the value of σDNI
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Figure 2 Irradiance data at 12:00pm on April 10th at all California sites from the NSRDB over

2000-2005, plotted with the corresponding two-regime fit described in Eq. 6, with capping of values that

exceed the maximum DHI in the dataset.

that provides the appropriate day-ahead forecast uncertainty. An analysis of the

effect of varying σDNI on the RMS error of the GHI is shown in Figure 3. A value of

σDNI = 130W/m2 was chosen so that the RMS error of the GHI over the simulation

period was approximately 10%.

0 50 100 150 200
2

4

6

8

10

12

14

Input Standard Deviation for Direct Beam Irradiance Model, σIB (W/m2)

R
M

SE
 o

f G
H

I (
%

 o
f m

ax
 G

H
I)

Student Version of MATLAB

Figure 3 Solar thermal power forecast error trials for determining σIB . The value of σDNI is chosen so

that the RMS error of the day-ahead forecast is approximately 10%.
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1.3 Irradiance Data

The simulations in [Hart and Jacobson(2011)] used irradiance data from the So-

larAnywhere database [Clean Power Research, LLC(2010)] for the year 2006. How-

ever, slight differences in the sunrise and sunset times were found between the models

employed for the NSRDB and the SolarAnywhere data. Because the NSRDB his-

torical dataset was used to approximate upper bounds for the DNI and the DHI,

this discrepancy led to unrealistic capping of the DNI and the DHI in some hours

near the sunrise or sunset over 2006. In order to avoid this issue, irradiance data

was modeled for 2006 in this analysis by scaling each day of the 2005 DNI time

series data by the ratio of the 2006 mean daily GHI to the 2005 mean daily GHI

and capping with the historical maximum DNI to ensure reasonable values. This

method maintains the general meteorological conditions from the 2006 dataset, but

mimics the cloud-cover temporal patterns from the 2005 dataset.

1.4 CSP Constraints

The CSP model was also updated in order to better account for the flexibility of the

curtailment controls. In real parabolic trough systems, curtailment can be achieved

by rotating the mirrors away from the sun, a process that requires movement of

several large mechanical parts. It is unlikely that this cumbersome approach would

be used for real-time load balancing[Mancini(2011)], so the model now assumes that

reductions in the power sent to the thermal energy storage (TES) system from the

solar field are scheduled on a day-ahead basis. The following constraints are included

in the scheduling problem to determine the solar thermal curtailment schedule:

S◦csp(t)− ηsS◦csp(t− 1) = P ◦col(t)−
P ◦csp(t)

ηturb
, ∀t

0 ≤ P ◦col(t) ≤ ηcol
∑
j

Aap(j)I
′
col(j, t), ∀t

0 ≤ P ◦csp(t) ≤ Pmax
csp , ∀t

0 ≤ S◦csp(t) ≤ Smaxcsp , ∀t

(8)

where S◦csp is the scheduled energy stored in the TES system, P ◦col is the scheduled

power collected from all solar fields (which can be reduced from the maximum avail-

able solar power by rotating the mirrors away from the sun), P ◦csp is the scheduled

power output from all CSP systems, Aap(j) is the aperture area at site j, I ′col is

the forecasted irradiance that can be collected by the parabolic troughs, Pmax
csp is

the maximum aggregated CSP power block capacity, Smaxcsp is the maximum energy
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capacity of the TES system, ηS is the efficiency of the storage system, ηcol is the

collector efficiency, and ηturb is the turbine efficiency.

In real-time, the power sent to the TES system from the collectors, Pcol, is

uniquely determined by the scheduled mirror angle and the realized irradiance, Icol.

Pcol can be approximated prior to solving the dispatch problem by assuming that

the scheduled mirror angle fixes the ratio of the collected energy to the irradiance:

Pcol(k, t) =
P ◦col(t)

ηcol
∑

j Aap(j)I
′
col(j, t)

[
ηcol
∑
j

Aap(j)Icol(k, j, t)

]

= P ◦col(t)

∑
j Aap(j)Icol(k, j, t)∑
j Aap(j)I

′
col(j, t)

(9)

The CSP model then contributes the following constraints to the dispatch problem:

Scsp(k, t)− ηsScsp(k, t− 1) = Pcol(k, t)−
Pcsp(k, t)

ηturb
, ∀k, t

0 ≤ Pcsp(k, t) ≤ Pmax
csp , ∀k, t

0 ≤ Scsp(k, t) ≤ Smaxcsp , ∀k, t

(10)

where k is the realization and the circle superscript is dropped to indicate that the

variables represent realizations or real-time dispatch, rather than schedules.

1.5 Reserve Capacity Requirements

In [Hart and Jacobson(2011)], the majority of the carbon emissions associated with

high penetrations of renewables were associated with the spinning reserves required

to meet the loss of load expectations constraint of 1 day in 10 years. The initial sim-

ulations assumed that a constant capacity of spinning reserves was required in every

hour of the simulation (unless the reserves exceeded the forecasted load). While

the resulting spinning reserve capacities far exceed the present day conventions for

spinning reserves, this assumption was made in order to ensure a conservative ap-

proximation of the carbon emissions reductions associated with intermittent renew-

ables. Furthermore, it is likely that in systems with high penetrations of intermittent

renewables, the present day conventions will not ensure system reliability as they

do today. New conventions, which will undoubtedly depend on the penetration of

intermittent generation, must be developed for high penetration systems. Toward

this end, we have included a new treatment of spinning reserves in the simulations

presented in this study.

The model assumes that the system operator schedules spinning reserves to be

available based on the solution of the day-ahead scheduling problem. Available
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spinning reserves in each hour, P ◦spin, are assumed to be a linear function of the

forecasted load, L′, and the scheduled generation from intermittent renewables:

P ◦spin(t) = xLL
′(t) + xR

[
P ◦w(t) + P ◦csp + P ′pv(t)

]
(11)

where P ◦w is the scheduled wind power, P ◦csp is the scheduled CSP power, and P ′pv
is the forecasted PV output, and xL and xR are constants. Spinning reserve signals

are produced for various values of xL and xR and these signals are compared against

the power deficit signal (Pδ(k, t), an expensive power source included in the dispatch

model to ensure feasibility) in order to count the frequency of loss of load events.

If the spinning reserve signal is sufficient to meet the power deficit signal in all but

0.0274% of the hours (an LOLE of 1 day in 10 years) across all realizations, then

the corresponding xL and xR pair represent an acceptable spinning reserve schedul-

ing strategy. The set of all acceptable spinning reserve strategies, X is therefore

described by Equation 12.

X = {(xL, xR) :
∣∣{(k, t) : P ◦spin(t) ≤ Pδ(k, t)}

∣∣ ≤ LOLE ×K × T} (12)

Of all acceptable sets of xL and xR, the strategy is then chosen that minimizes the

time-integrated spinning reserve capacity.

minimize
T∑
t=1

P ◦spin(t)

subject to (xL, xR) ∈ X

(13)

2 Selection of the flexible generation parameter

The deterministic scheduling problem includes a constraint on the maximum amount

of scheduled generation, (1−α), in each hour that is allowed to come from inflexible

generators. Here, an inflexible generator refers to any technology that cannot be

ramped down or curtailed in real-time. The model assumes that geothermal, CSP,

PV, and hydroelectric generators are inflexible in this capacity so that all downward

flexibility must be provided by flexible natural gas plants and curtailable wind power.

These assumptions ensure that the solutions do not underestimate the natural gas

capacity required to reliably meet demand or the emissions associated with the

generation of natural gas plants. However the flexibility assumptions also neglect

some potential contributions to system flexibility from hydroelectric plants.

The minimum fraction of scheduled generation that must be downwardly flex-

ible (ie. from wind or natural gas), α is an operating decision that affects both
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the scheduling and the dispatch of the inflexible generators. For systems with

CSP, where curtailment of the collected power can be scheduled on a day-ahead

basis, a large α will result in CSP curtailment at lower system-wide CSP capacities,

while a small α may lead to infeasibility in the dispatch problem in hours of unex-

pectedly high irradiance. For technologies with uncontrollable output (distributed

photovoltaics and baseload generators), a large α may result in infeasibility of the

scheduling problem at lower system-wide installed capacities of the technology, while

a small α may lead to infeasibility in the dispatch problem in hours of high irradiance

and/or low demand.

For the single-technology analyses, the sensitivities of the primary model outputs

(energy penetration of the technology of interest, system-wide emissions, and total

natural gas capacity) to α were investigated for low, moderate, and high capacities.

These analyses were used to determine values of α for each technology that min-

imized the system-wide carbon dioxide emissions while ensuring the feasibility of

both the scheduling and dispatch problems. Results from the wind power analysis

(see Figure 4) indicate that the model outputs are not sensitive to α in modeling

wind power integration because wind power can be curtailed on a real-time basis.

This dramatically reduces the burden on the rest of the system to provide downward

generating flexibility. Based on this analysis, a value of α = 0.3 was chosen for all

subsequent wind power simulations.
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Figure 4 The sensitivity of (a) system-wide carbon intensity, (b) wind energy penetration, and (c)

natural gas capacity to flexible generation fraction, α for wind scenarios, with K = 20. Based on these

simulations, a value of α = 0.3 (shown as red dashed line) was chosen for all subsequent wind power

simulations.
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Figure 5 The sensitivity of (a) system-wide carbon intensity, (b) CSP energy penetration, and (c)

natural gas capacity to flexible generation fraction, α for wind scenarios, with K = 20. Based on these

simulations, a value of α = 0.1 (shown as red dashed line) was chosen for all subsequent CSP simulations.
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Figure 6 The sensitivity of (a) system-wide carbon intensity, (b) PV energy penetration, and (c) natural

gas capacity to flexible generation fraction, α for wind scenarios, with K = 20. Based on these

simulations, a value of α = 0.1 (shown as red dashed line) was chosen for all subsequent PV power

simulations.

Results from the CSP analysis are shown in Figure 5. For values of α smaller

than those plotted, the dispatch problem is infeasible for some time steps, and for

values of α greater than those plotted, the scheduling problem is infeasible. Not
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surprisingly, the sensitivity of each output to α depends on the CSP penetration, as

greater penetrations require greater system-wide flexibility. At higher penetrations,

the problem is both more constrained and more sensitive to α. Based on these

results, a value of α = 0.1 was chosen for all subsequent CSP simulations. At high

penetrations, this is close to the feasibility limit of the dispatch problem, which

ensures fairly low-emissions operation. At lower penetrations, the outputs are less

sensitive to α and a value of α = 0.1 still maintains low-emissions operation.

Results from the PV analysis are shown in Figure 6. The model outputs were

largely insensitive to the value of α, particularly at small-to-moderate sized capaci-

ties. At 35GW, a value of α = 0.1 yielded both the minimum carbon emissions and

minimum natural gas capacity, so this value was chosen for all subsequent PV cal-

culations in the single-technology analysis. In the analyses of portfolios containing

both wind and solar power, PVs are modeled as curtailable in order to examine very

high penetrations. For these simulations, PVs were not included in the inflexible

generation fleet and α was set to 0.3, as in the wind-only simulations.

3 Natural gas utilization in wind-dominated portfolios

The natural gas utilization analysis was repeated for a portfolio with 70GW wind,

30GW solar, 9GW geothermal, and existing hydropower in order to test the sen-

sitivity of the conclusions to the make-up of the renewable portfolio. The results

are shown in Figure 7. The natural gas scheduling and utilization patterns are

very similar between the solar-dominated portfolio reported in the manuscript and

the wind-dominated portfolio shown here. The most prominent difference between

the two scenarios arises in the diurnal cycle of the natural gas utilization. Both

portfolios tend to require more natural gas reserves at night, when solar power is
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Figure 7 The average (a) available, and (b) utilized natural gas generating capacity in each hour of the

year for a simulation of the California ISO over 2005-2006 with a renewable portfolio consisting of 70GW

wind, 30GW solar, and 9GW geothermal power.

10

Electronic Supplementary Material (ESI) for Energy & Environmental Science
This journal is © The Royal Society of Chemistry 2012



unavailable, however this trend is more prominent in the solar-dominated portfolio

because the daytime natural gas utilization is reduced due to an excess of day-time

solar power.
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