Supplementary Information to:

Dye Regeneration and Charge Recombination in Dye-Sensitized Solar Cells with Ferrocene Derivatives as Redox Mediators

Torben Daeneke¹, Attila J. Mozer³, Tae-Hyuk Kwon², Noel W. Duffy⁴, Andrew B. Holmes², Udo Bach^{5*}, Leone Spiccia¹*

¹School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria 3800, Australia

²School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia,

³Intelligent Polymer Research Institute, ARC Centre for Excellence for Electromaterials Science, University of Wollongong, Wollongong, 2522, Australia

⁴CSIRO Energy Technology, Clayton, VIC 3169, Australia

⁵Department of Materials Engineering, Monash University, Victoria 3800, Australia; *correspondence to: <u>Leone.Spiccia@monash.edu</u> ; <u>Udo.Bach@monash.edu</u>

	%C	%Н	%N	%S
Found	30.3	2.31	2.99	14.0
Calculated	30.9	2.16	3.00	13.7
Found	32.9	3.01	2.75	12.5
Calculated	34.0	2.86	2.83	13.0
Found	35.4	3.81	2.65	12.0
Calculated	36.8	3.47	2.68	12.3
Found	45.1	5.07	2.14	10.2
Calculated	43.6	4.99	2.31	10.6
Found	26.5	1.64	2.72	12.0
Calculated	26.4	1.66	2.57	11.8
	Found Calculated Found Calculated Found Calculated Found Calculated Found	%CFound30.3Calculated30.9Found32.9Calculated34.0Found35.4Calculated36.8Found45.1Calculated43.6Found26.5Calculated26.4	%C %H Found 30.3 2.31 Calculated 30.9 2.16 Found 32.9 3.01 Calculated 34.0 2.86 Found 35.4 3.81 Calculated 36.8 3.47 Calculated 45.1 5.07 Calculated 43.6 4.99 Found 26.5 1.64 Calculated 26.4 1.66	%C %H %N Found 30.3 2.31 2.99 Calculated 30.9 2.16 3.00 Found 32.9 3.01 2.75 Calculated 34.0 2.86 2.83 Calculated 34.0 2.86 2.83 Found 35.4 3.81 2.65 Calculated 36.8 3.47 2.68 Found 45.1 5.07 2.14 Calculated 43.6 4.99 2.31 Found 26.5 1.64 2.72 Calculated 26.4 1.66 2.57

SI-T1: Elemental analyses for ferrocenium TFSI salts.

Cyclic Voltammetry

	I _{OX} (μA)	I _{RED} (μΑ)	I _{OX} /I _{RED}	E _{OX} (V)	E _{RED} (V)	E _{1/2} (V)	E _{OX} - E _{RED} (V)	D (cm ² *s ⁻¹)
Et ₂ Fc	22	23	0.97	0.56	0.47	0.51	0.09	6.5E-06
EtFc	36	33	1.07	0.63	0.51	0.57	0.12	7.3E-06
Fc	45	44	1.03	0.69	0.57	0.63	0.12	1.9E-05
BrFc	24	24	0.99	0.84	0.75	0.80	0.09	7.9E-06
Br ₂ Fc	29	28	1.02	0.99	0.90	0.94	0.09	1.5E-05

SI-T2 Cyclic voltammetry in acetonitrile

CV measurements were made on 3 mM solution of the analyte in acetonitrile containing 0.1 M Bu₄NPF at a scan rate of 20 mVs⁻¹. The diffusion coefficient was calculated from CVs recorded at scan rates of 20, 50, 100, 150 and 200 mVs⁻¹. All potentials were measured vs. Ag / AgNO₃ and converted to the NHE scale using $E_{1/2}$ Fc = 0.63 V vs. NHE

SI-T3 Cyclic voltammetry in benzonitrile

	I _{OX} (μA)	I _{RED} (μΑ)	I _{OX} /I _{RED}	$E_{OX}(V)$	E _{RED} (V)	E _{1/2} (V)	E _{OX} - E _{RED} (V)	D (cm ² *s ⁻¹)
Me ₁₀ Fc	9	10	0.96	0.17	0.01	0.09	0.17	6.8E-07
Et ₂ Fc	10	10	0.99	0.57	0.43	0.50	0.15	6.2E-07
EtFc	13	13	1.00	0.64	0.48	0.56	0.16	1.3E-06
Fc	16	16	1.00	0.71	0.53	0.62	0.18	1.3E-06
BrFc	13	13	1.02	0.87	0.70	0.79	0.17	9.0E-07
Br ₂ Fc	12	11	1.09	1.01	0.86	0.94	0.15	8.8E-07

CV measurements were made on 3 mM solution of the analyte in benzonitrile containing 0.1 M Bu₄NPF at a scan rate of 20 mVs⁻¹. The diffusion coefficient was calculated from CVs recorded at scan rates of 10, 20, 50, 100, and 150 mVs⁻¹. All potentials were measured vs. Ag / AgNO₃ and converted to the NHE scale using $E_{1/2}$ Fc = 0.62 V vs. NHE

SI-T4 Tabulated J-V data ^{a)}

_				10 mW	/*cm ⁻²						
	E _{1/2} (V) ^{d)}	E _{1/2} (dye) - E _{1/2} (R ₁₀ Fc) (V) ^{d)}	V _{oc} (mV)	J _{SC} (mA * cm ⁻²)	FF (%)	η (%)	V _{oc} (mV)	J _{SC} (mA * cm ⁻²)	FF (%)	η (%)	IPCEmax (%)
Me ₁₀ Fc ^{b)}	0.09	0.90	351±14	1.36±0.06	0.48±0.01	2.2±0.2	437±22	6.6±0.3	0.40±0.01	1.1±0.1	79
Et ₂ Fc ^{c)}	0.51	0.48	483±23	1.34±0.09	0.64±0.02	4.0±0.4	641±35	13.3±1.4	0.50±0.05	4.2±0.6	77
EtFc ^{c)}	0.57	0.42	540±20	1.34±0.06	0.69±0.01	4.9±0.5	669±20	12.8±1.3	0.56±0.04	4.8±0.2	79
Fc ^{c)}	0.63	0.36	608±3	1.31±0.06	0.70±0.02	5.4±0.4	737±22	12.5±1.2	0.57±0.03	5.2±0.2	76
BrFc ^{c)}	0.80	0.19	584±32	0.64±0.06	0.61±0.01	2.2±0.4	671±8	9.3±0.9	0.48±0.05	3.0±0.3	40
Br ₂ Fc ^{c)}	0.94	0.05	519±15	0.52±0.03	0.58±0.01	1.5±0.08	599±13	4.4±0.3	0.46±0.02	1.2±0.1	30

a) Electrolytes contained 100 mM reduced mediator, 12.5 mM oxidized mediator and 10 mM chenodeoxycholic acid, results are averaged from 3 devices; b) CV, J-V and IPCE recorded in benzonitrile electrolyte; c) CV, J-V and IPCE recorded in acetonitrile electrolyte; d) $E_{1/2}$ values measured vs. Ag/AgNO₃ and converted to the NHE scale using $E_{1/2}$ Fc = 0.63 V vs. NHE (ACN) and 0.62 V vs. NHE (BZN)

Transient Absorption

Figure SI-F2 shows the transient absorption traces of devices filled with different concentrations of ferrocene dissolved in acetonitrile containing 10 mM chenodeoxycholic acid. While a concentration of 100 and 10 mM led to too fast regeneration of dye^+ , a concentration of 1 mM led to insufficient regeneration. Thus, 5 mM was chosen as a concentration for the transient absorption study using different ferrocene derivatives.

SI-F1: Transient absorption spectra, recorded at 900 nm, excitation at 532nm with electrolytes containing 0 mM Fc (black), 1 mM Fc (red), 5 mM Fc (green), 10 mM (blue) and 100 mM Fc (orange). All measurements were made in acetonitrile containing 10 mM chenodeoxycholic acid.

Sample	$\Delta OD_{(t=0)}$	τ _(ww)	rel.	β	rel.	Г	rel.	$ au_{obs}$	rel.	k _{obs}	rel.	k _{reg}	rel.	R ²
	(mOD)	(s)	error (%)		error (%)		error (%)	(s)	error (%)	(s ⁻¹)	error (%)	(s⁻¹*mol⁻¹)	error (%)	
Acetonitrile														
Dye only	4.50E-04	1.46E-03	1.5	0.646	0.8	0.89	0.1	3.11E-03	3.2	3.21E+02	3.2			0.99
Br ₂ Fc	4.00E-04	2.52E-04	2.2	0.482	0.8	1.03	0.9	1.12E-03	4.7	8.89E+02	4.8	^{a)}	^{a)}	0.98
Br ₂ Fc														
100 mM	5.00E-04	1.71E-04	0.7	0.408	0.3	1.28	0.8	1.31E-03	2.2	7.61E+02	2.2			0.99
BrFc	4.00E-04	5.33E-05	8.2	0.379	2.8	1.47	5.4	5.46E-04	21.8	1.83E+03	21.7	a)	a)	0.91
BrFc														
100 mM	4.50E-04	7.64E-08	3.7	0.149	0.8	422.04	8.7	1.45E-03	14.5	6.89E+02	14.5	3.68E+03	27.1	0.97
Fc	4.50E-04	9.62E-07	4.1	0.562	3.5	0.93	1.9	2.82E-06	13.9	3.55E+05	13.4	7.10E+07	13.4	0.94
EtFc	4.50E-04	4.49E-07	5.3	0.455	4.2	1.10	5.6	2.38E-06	21.2	4.19E+05	20.0	8.38E+07	20.1	0.89
Et ₂ Fc	4.50E-04	4.21E-07	5.5	0.441	4.5	1.15	6.7	2.49E-06	23.5	4.02E+05	22.3	8.04E+07	22.3	0.88
							Benzoi	nitrile						
Dye only	5.00E-04	2.04E-04	1.8	0.503	0.7	1.00	0.6	8.02E-04	3.9	1.25E+03	3.9			0.996
Br ₂ Fc	6.00E-04	9.61E-05	1.3	0.490	0.7	1.02	0.6	4.07E-04	3.4	2.46E+03	3.4	a)	^{a)}	0.997
BrFc	5.50E-04	2.57E-04	1.5	0.458	0.0	1.09	0.7	1.34E-03	3.4	7.45E+02	3.3	a)	^{a)}	0.997
Fc	4.50E-04	8.98E-06	1.9	0.790	2.1	0.90	0.6	1.30E-05	5.9	7.70E+04	5.8	1.52E+07	5.9	0.96
EtFc	4.50E-04	5.68E-06	0.9	0.681	1.2	0.89	0.0	1.08E-05	3.3	9.22E+04	3.2	1.82E+07	3.3	0.98
Et ₂ Fc	4.50E-04	5.08E-06	0.8	0.730	1.1	0.89	0.1	8.46E-06	2.9	1.18E+05	2.9	2.34E+07	3.0	0.99
Me ₁₀ Fc	4.50E-04	2.93E-06	1.3	0.597	1.4	0.90	0.4	7.45E-06	4.6	1.34E+05	4.6	2.66E+07	4.7	0.98

SI-T5: Tabulated fitted parameters from the analysis of TAS data

All TAS measurements were made using 900 nm probe light. Laser excitation occurred at 532 nm, 6 ns pulses, typical pulse intensity was 3 μ J cm⁻² pulse⁻¹, 10 Hz repetition rate. Kinetic traces were averaged from 1536 laser pulses. Fitting of the data was done using the Origin program. The initial signal magnitude Δ OD_(t=0) was estimated and fixed during the fitting routine to achieve a representing fit a) Insufficient dye regeneration - no regeneration rate was calculated.

IMVS

SI-F2: IMVS- plot measured on a ferrocene mediated device containing 100 mM Fc, 12.5 mM FcTFSI, 10 mM chenodeoxycholic acid in acetonitrile. Frequency range 7 Hz to 20 KHz. Green circles indicate start and end point of the measurement as well as he closest points to f_{min} . Arrow indicates f_{min} determined by a custom written fitting software according to Peter *et al.*¹

Charge Extraction

SI-F3: Extracted charge vs. time plot of a DSC with a BrFc mediator measured at different light intensities represented by black - 1 sun, red - 0.25 sun, green - 0.1 sun, blue - 0.05 sun, cyan - 0.01 sun. The straight lines indicate one electron life time determined by IMVS. Left logarithmic time scale, right linear time scale.

SI-F4: Extracted charge vs. time plot of a DSC with a Fc mediator measured at different light intensities represented by black - 1 sun, red - 0.25 sun, green - 0.1 sun, blue - 0.05 sun, cyan - 0.01 sun. The straight lines indicate one electron life time determined by IMVS. Left logarithmic time scale, right linear time scale.

SI-F5: Extracted charge vs. time plot of a DSC with a EtFc mediator measured at different light intensities represented by black - 1 sun, red - 0.25 sun, green - 0.1 sun, blue - 0.05 sun, cyan - 0.01 sun. The straight lines indicate one electron life time determined by IMVS. Left logarithmic time scale, right linear time scale.

SI-F6: Extracted charge vs. time plot of a DSC with a Et_2Fc mediator measured at different light intensities represented by Black - 1 sun, red - 0.25 sun, green - 0.1 sun, blue - 0.05 sun, cyan - 0.01 sun. The straight lines indicate one electron life time determined by IMVS. Left logarithmic time scale, right linear time scale.

SI-F7: Extracted charge vs. time plot of a DSC with a $Me_{10}Fc$ mediator measured at different light intensities represented by black - 1 sun, red - 0.25 sun, green - 0.1 sun, blue - 0.05 sun, cyan - 0.01 sun. The straight lines indicate one electron life time determined by IMVS. Left logarithmic time scale, right linear time scale.

SI-F8: Extracted charge vs. normalized V_{OC} , measured on devices containing 100 mM of the reduced species, 12.5 mM of the oxidized species and 10 mM cheno in acetonitrile for BrFc (green snowflakes), Fc (blue diamonds), EtFc (pink triangles), Et₂Fc (black circles) and benzonitrile Me₁₀Fc (orange squares). Filmthicknes \Box 2.3 µm transparent 18 nm particle layer, 6.0 µm 400 nm particle scattering layer.

References

(1) Peter, L. M.; Wijayantha, K. G. U. *Electrochem. Commun.* **1999**, *1*, 576-580.