A free-standing aligned-carbon-nanotubes/nanocomposite foil as efficient counter electrode for dye solar cells

Francesco Malara, Michele Manca*, Maurizio Lanza, Christof Hübner, Elpida Piperopoulos and Giuseppe Gigli

Morphological characterization of the VACNTs film

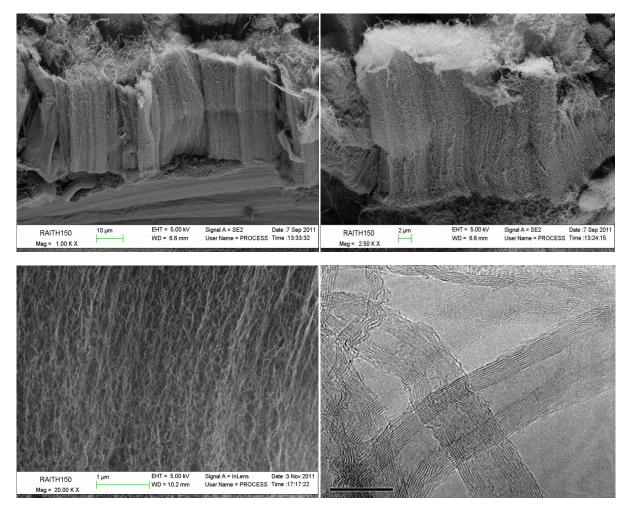


Figure S1. a), b) SEM micrographs showing the top layer of a VANC foil. c) cross-sectional view of the CNT-s forest; d) TEM micrograph of the multi-walled CNTs (scale bar 10 nm).

Mechanical characterization of the nanocomposite foils

To compare the mechanical properties of the here proposed nanocomposite foils, their tensile properties (E_t Young' modulus and σ_B stress at break) have been measured according to the procedure described by ASTM D882 - 10 Standard Test Method for Tensile Properties of Thin Plastic Sheeting.

The stress-strain curves have been detected by using a Q800 DMA system from TA Instruments. Measurements have been carried out at the following working conditions:

control force regime ; pre-load= 0.01N, T=25°C ; force rate 0.5N/min up to 18N.

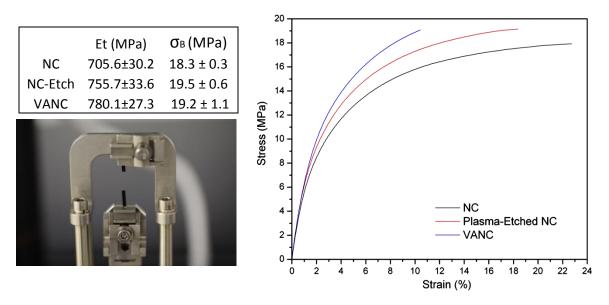


Figure S2: Stress-strain curves measured for three different species of nanocomposite foils

Electrical characterization upon vigorous bending

Sheet resistance of the VANC foil has been evaluated upon two different bending conditions by using a Keithley unit (Model 2400 Source Meter). The nominal value of Rs was thus determined by averaging fifteen measured data over 3 different samples. 20mm x 5mm-sized strips of VANC (thickness 360 μ m) were used for this test. A specific run of fifteen I-V tests (in the range 0-10 V) was executed for each sample on different points of the surface both under concave and convex bending: a radius of curvature of 7 mm was adopted in both of the cases.

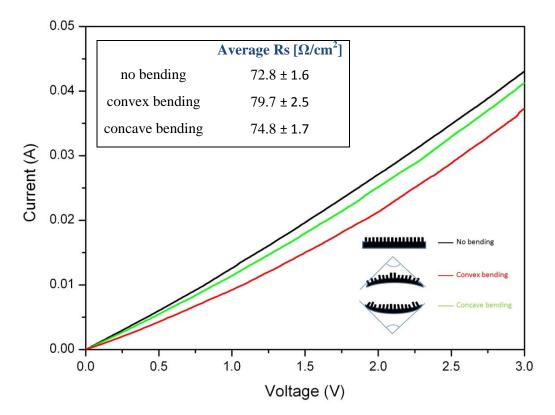


Figure S3. I-V characteristics of a VANC foil which has been subjected to a specific flexural stress.