Supplementary information for Thornton et al.

Feasibility for Zeolitic Imidazolate Frameworks as Gas Separation Membranes in Clean Energy Applications

TABLE S1: van der Waals forcefield values for calculating solubility coefficients. Framework atoms were modified from the Dreiding FF database according the parameterization technique outlined by Dubbeldam *et al.*⁶⁹ resulting in the following scaling factors ($0.95 \times$ kinetic diameter, $0.85 \times$ well depth). Note that the unmodified Dreiding FF database is used for diffusivity coefficients.

	kinetic	well depth	
	diameter (Å)	(K)	
Gases			
H2	2.958	36.7	
CH4	3.73	148	
0_CO2	3.05	79	
C_CO2	2.80	27	
N_N2	3.31	36	
0_02	2.99	52	

	kinetic	well depth	
	diameter (Å)	(K)	
Framework atoms			
Zn	3.84	23.1	
0	2.88	40.2	
N	3.10	29.2	
С	3.30	39.9	
Н	2.71	6.38	

FIGURE S1: Our calculated Mean Squared Displacement (MSD) of gas molecules from molecular dynamics simulation within ZIF-11. This indicates the strong preference for transport of hydrogen over other gases, which reach a plateau in MSD, indicating that they are confined within the cell

TABLE S2: Accessible surface area (using center of probe with nitrogen radius = 1.84 Å), ore volume (using Connolly probe with helium radius = 1.3 Å), helium void fraction (Widom Insertion method), cavity size and window size.

	Surface	Pore	Void	Cavity	Window	Window	Cavity	Window	Window
	area	volume	fraction	size 1	Size 1a	Size 1b	Size 2*	Size 2a	Size 2b
	(m ² /g)	(cm^3/g)	(-)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
					• •				
ZIF-7	230	0.235	0.274	4.31	2.9	-	4.8	1.8	-
ZIF-8	1344	0.554	0.465	11.6	3.14	-	-	-	-
ZIF-11	1140	0.457	0.469	14.6	3.10	-	12.5	3.08	-
ZIF-69	967	0.392	0.418	6.6	4.2	-	7.6	5.4	-
ZIF-71	1007	0.452	0.512	16.5	3.65	4.7	17.0	3.65	4.75
ZIF-77	331	0.203	0.309	4.7	3.74	3.6	-	-	-
ZIF-90	1360	0.561	0.498	10.8	2.86	-	-	-	-

* The second cavity is due to the ligands asymmetry.

TABLE S3: Equilibrium gas concentrations at 298 K and 10 bar calculated with software package RASPA. Gases are labeled with their Lennard-Jones well depth values (K).

	Simulated Concentration (mol/m ³)					
	H ₂	CO ₂	O_2	N ₂	CH ₄	
	(60 K)	(195 K)	(107 K)	(71 K)	(149 K)	
ZIF-7	378	3407	2828	2469	3211	
ZIF-7 (498 K)	73	1218	427	305	872	
ZIF-8	304	4528	1177	974	2253	
ZIF-11	297	8203	5310	4402	6152	
ZIF-69	297	4852	1760	1318	2962	
ZIF-71	342	4268	1520	1190	2185	
ZIF-77	281	4324	2082	1508	3143	
ZIF-90	313	4557	1182	964	2160	
ZIF-90 (498 K)	120	415	230	206	335	

TABLE S4: Diffusivities at 298 K and 10 bar calculated with Forcite module within Accelrys package. Gases are labeled with their Lennard-Jones kinetic diameter values (Å)

	Simulated Diffusivity (m ² /sec) x 10^{-8}					
	H_2	CO ₂	O ₂	N_2	CH_4	
	(2.89 Å)	(3.30 Å)	(3.46 Å)	(3.64 Å)	(3.87 Å)	
ZIF-7	0.16	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
ZIF-7 (498 K)	1.33	0.0025	0.0012	0.00187	0.0013	
ZIF-8	5.82	0.19	0.50	0.13	0.03	
ZIF-11	0.72	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
ZIF-69	2.94	0.12	0.11	0.16	0.08	
ZIF-71	10.02	0.42	1.30	0.58	0.76	
ZIF-77	11.43	0.54	0.62	1.14	0.09	
ZIF-90	4.75	0.08	0.36	0.10	0.03	
ZIF-90 (498 K)	5.54	0.12	0.37	0.15	0.04	