Supplementary Information

Ge inverse opal with porous wall as an anode for lithium ion batteries

Taeseup Song^{‡1}, Yeryung Jeon^{‡2}, Monica Samal³, Hyungkyu Han¹, Hyunjung Park², Dong

Kee Yi³, Jae-Man Choi⁴, Young-Min Choi⁴ and Ungyu Paik^{2*}

¹Department of Materials Science and Engineering, Hanyang University, Seoul 133-791,

Korea

²WCU Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea

³Division of Bionanotechnology, Gachon Bionano Institute, Gachon University, Geonggi-do 461-701, Korea

⁴Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 440-600, Korea

‡ Both authors contributed equally to this work.

Corresponding Author*

Ungyu Paik (upaik@hanyang.ac.kr)

Figure S1. SEM images of silica opal template and Ge inverse opal with different wall microstructures. (a) 45° tilted SEM image of silica opal. (b) 45° tilted SEM image of Ge inverse opal with porous wall. (c) 45° tilted SEM image of Ge inverse opal with dense wall.

Figure S2. Voltage profiles of Ge inverse opal with porous wall electrode in a coin-type half cell after 35% lithiation and full lithiation of the first cycle and 1 cycle at a rate of 0.2C.

Figure S3. Morphological changes in Ge film on the silica opal as functions of the processing temperature and pressure. Scale bar is $1\mu m$.

Table S1. The initial coulombic efficiencies and internal resistances of both the Ge inverse opal electrodes with dense wall and porous wall.

	The 1st coulombic efficiency	Internal resistance (Ω)							
		x (Li _x Ge) during lithiation				x (Li _x Ge) during delithiation			
Porous wall	93%	1.502 x 10 ⁶	1.567 x 10 ⁶	1.257 x 10 ⁶	1.064 x 10 ⁶	9.694 x 10 ⁶	6.753 x 10 ⁶	7.328 x 10 ⁶	9.763 x 10 ⁶
		x=0.539	x=1.482	x=2.291	x=2.965	x=3.459	x=2.785	x=1.976	x=1.166
Dense wall	93.6%	2.078 x 10 ⁶ x=0.539	2.039 x 10 ⁶ x=1.482	1.906 x 10 ⁶ X=2.291	1.586 x 10 ⁶ x=2.965	1.115 x 10 ⁶ x=3.495	8.737 x 10 ⁶ x=2.822	1.079 x 10 ⁶ x=2.013	1.402 x 10 ⁶ x=1.204