Supporting Information

## Acid-Catalyzed Conversion of Furfuryl Alcohol to Ethyl Levulinate in Liquid Ethanol

Gretchen M. González Maldonado<sup>1</sup>, Rajeev S. Assary<sup>2,3</sup>, James Dumesic<sup>\*,1</sup>, Larry A. Curtiss<sup>2,4</sup>

<sup>1</sup> Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States

<sup>2</sup> Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

<sup>3</sup>Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208

<sup>4</sup>Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439,

\*Corresponding author: dumesic@engr.wisc.edu

## **Fragmentation Analysis**

Protonated EL  $[M+H]^+$  has a m/z of 145.0 (MW = 144), and the fragmentation pattern is: MS(1) 145.0  $\rightarrow$  MS(2) 99 .1  $\rightarrow$  MS(3) 71.5 $\rightarrow$  MS(4) 43.8. Both intermediate 1 and intermediate 2 have similar mass spectra, but the fragmentation patterns of these intermediates are different. Intermediate 1 starts by fragmenting the 113.0 ion. It fragments the following way: MS(1) 113.0  $\rightarrow$  MS(2) 81.4, 71.6  $\rightarrow$  MS(3) 53.9; MS(2) 71.6  $\rightarrow$ MS(3) 41.8, 43.9; in the case of intermediate 2 the 127.0 m/z ion is fragmented the following way: MS(1) 127.0  $\rightarrow$  MS(2) 99.1 $\rightarrow$ MS(3) 71.5  $\rightarrow$  MS(4) 43.8. A FAL molecule or a ring-opened molecule with the same MW as FAL, i.e. 98, that reacts with ethanol and loses one water molecule has a MW of 126, 127 m/z when protonated. The ethyl group is not very stable inside the ion trap, therefore giving a 113.0 m/z ion as the most abundant ion, followed by 127.0 m/z (see figures 3 to 5 of the article).



Figure S 1. Proposed Fragmentation MS(n) Pattern for Intermediate 1

Intermediate 3 has the following fragmentation: MS(1) 158.9  $\rightarrow$  MS(2) 85.0  $\rightarrow$  MS(3) 58.7, 46.1. Ion 172.9, shown in Figure 5 of the article, was not fragmented initially. From 172.9 to 158.9 a mass of 14 is lost, similar to the case for intermediate 1 and 2.



Figure S 2. Proposed Fragmentation MS(n) Pattern for Intermediate 2



Figure S 3. Proposed fragmentation pathway for Intermediate 3. Note that the original the m/z detected by the ion trap is the 173m/z but the ion that is first fragmented is 159 m/z. See the NMR analysis for more details on this molecule with MW = 218.

## **Theoretical Studies**



Scheme S 1. Schematic representation of addition products of FAL cation (C1) and ethoxy-methyl-furan (EMF) with ethanol. The computed free energies of the reactions (kcal/mol) at the B3LYP/6-31G(2df,p) level of theory is also given. (\*) indicates the addition reaction is C=CH<sub>2</sub> bond.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is  ${\rm $\textcircled{O}$}$  The Royal Society of Chemistry 2012



Scheme S 2. Schematic representation for the formation of Intermediate 1 and Intermediate 3 from FAL. The computed relative free energies (kcal/mol) of all species w.r.t FAL is also shown.

## NMR Spectra



Figure S 4. FAL <sup>1</sup>HNMR in CDCl3. Full spectrum (top), zoom in doublet and multiplets (bottom). TMS was used as a reference.



Figure S 5. <sup>1</sup>HNMR of EMF (intermediate 1) in CDCl<sub>3</sub> (top). Zoom in of quartet and triplet resonances (bottom).



Figure S 6. Intermediate 1 (EMF) Zoom in on group D



Figure S 7 HSQC NMR for EMF (intermediate 1)



Figure S 8 <sup>1</sup>HNMR of intermediate 3 in CDCl<sub>3</sub>. Dichloromethane, methanol, and chloroform are impurities from the isolation process. Dichloromethane was present in the low-pressure evaporation environment from a previous experiment.



Figure S 9 Zoom in of <sup>1</sup>H NMR spectrum of intermediate 3 at 3.8 - 5.4 ppm



Figure S 10 Zoom in of multiplets of <sup>1</sup>H NMR spectrum of intermediate 3 from 3.5 – 3.8 ppm



Figure S 11 Zoom in of <sup>1</sup>HNMR spectrum of intermediate 3 at 1.1-1.3 ppm



Figure S 12 TOCSY NMR for 4,5,5-triethoxypentan-2-one (intermediate 3)





Figure S 14 COSY NMR for intermediate 3. The red numbers represent the number of protons.



Figure S 15 HSQC NMR for intermediate 3.



Figure S 16 <sup>13</sup>C NMR for Intermediate 3