ELECTRONIC SUPPLEMENTARY INFORMATION

Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO₂ to CO

Jacob Schneider,*^{*a*} Hongfei Jia,^{*b*} Kazuya Kobiro,^{*c*} Diane E. Cabelli,^{*a*} James T. Muckerman,^{*a*} and Etsuko Fujita*^{*a*}

^a Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

^b Materials Research Department, Toyota Research Institute of North America, Toyota Motor Engineering & Manufacturing North America, Inc., 1555 Woodridge, Ann Arbor, MI 48105, USA.

^c School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami-city, Kochi 782-8502, Japan.

E-mail: jschneider@bnl.gov, fujita@bnl.gov

I. Supplementary Information for CV and LSV experiments

II. Supplementary Information for bulk electrolysis experiments

III. Supplementary Information for pulse radiolysis experiments

IV. Supplementary Information for calculations, calibrations, etc.

Figure S1. CVs of 1.6 mM solutions of $[Ni(L)]^{2+}$ in 0.1 M NaClO₄, pH 5, purged with Ar (solid lines) and CO₂ (dashed lines), scanning at 100 mV s⁻¹, SMDE working electrode (area = 0.0104 cm²). Background scans are shown in the panel with $[Ni(cyclam)]^{2+}$ (top left). Arrows indicate the direction of the applied potential.

Figure S2. CVs of $[Ni(MTC)]^{2+}$ under different concentrations of CO₂ (left panel); 0.1% (0.036 mM), 3% (1.08 mM), 9.9% (3.56 mM), 30.3% (10.9 mM), and 100% CO₂ (36 mM). The right panel shows the linear correlation between the current densities at -1.13 V versus the square root of the concentration of CO₂. Conditions: *ca.* 1 mM [Ni] in 0.1 M NaClO₄, pH 4-5; SMDE working (area = 0.0104 cm²), Pt wire auxiliary, and Ag/AgCl (satd KCl) reference electrodes; 100 mV s⁻¹ scan rate. Nitrogen is the gas balance for CO₂ at different concentrations.

Figure S3. Plots of the overpotential (η) for CO₂ reduction at pH 5 versus the log of the current density (*j*) for $[Ni(MTC)]^{2+}$ (top), $[Ni(MCC)]^{2+}$ (middle) and $[Ni(TM)]^{2+}$ (bottom). LSVs run in CO₂ saturated solutions containing 1 mM $[Ni(L)]^{2+}$ in 0.1 M NaClO₄, 2 mV s⁻¹ scan rate, SMDE working electrode (area = 0.0104 cm²). Here, η is calculated from the thermodynamic potential for CO₂ reduction to CO at pH 5 (-0.41 V vs NHE). The horizontal dotted lines correspond to potentials used in bulk electrolysis experiments (see Bulk electrolysis section in manuscript). The vertical dashed lines correspond to the pre-wave due to $[Ni(L)]^+$ adsorption and geometric rearrangement.

	mA cm ⁻² at	mA cm ⁻² at
L	$\eta = -0.41 \text{ V}$	$\eta = -0.55 \text{ V}$
cyclam	0.014	0.766
HTIM	0.009	0.971
MTC	0.014	0.764
MCC	0.014	0.639
TM	0.007	0.125

Table S1. Selected data from the LSV slow scan analysis^{*a*}.

^{*a*} The thermodynamic overpotential (η) for the reduction of CO₂ to CO is taken to be -0.41 V vs NHE at pH 5.

q/C	25 20	blank cyclam HTIM MTC TM - 0.96 V vs Ni pH 5	HE 0.25 0.3 Time	50 0.75 e / h	1.00
L		q	/ C	F.E. (%)) CO:H ₂
cyclam		3.6	± 0.1	84 ± 4	Trace H ₂
HTIM		22	2 ± 3	88 ± 7	$No H_2$
MT	С	15	5 ± 0	88 ± 7	No H ₂
MCC		3.3 ± 0.1		92 ± 2	$No H_2$
ТМ		0.87	± 0.22	42 ± 4	Trace H ₂
blank		1.4	± 0.3	64 ± 12	0.4 ± 0.3

II. SUPPLEMENTARY INFORMATION FOR BULK ELECTROLYSIS EXPERIMENTS

Figure S4. Bulk electrolysis at -0.96 V vs NHE ($\eta = -0.55$ V) for 50 μ M [Ni(L)]²⁺ in 0.1 M NaClO₄, pH 5; CO:H₂ is the ratio (mol CO / mol H₂), as quantified by GC analysis after 1 h electrolysis.

Figure S5. Bulk electrolysis of 50 μ M [Ni(MTC)]²⁺ in 0.1 M NaClO₄, pH 5, at -0.96 V vs NHE cycled five times with the same solution; 1 h each cycle. After Cycle 4, the mercury pool electrode was cleaned and the [Ni(MTC)]²⁺ solution kept overnight in a vial before use in Cycle 5.

Figure S6. Bulk electrolysis data for a 5 μ M solution of [Ni(HTIM)]²⁺ in 0.1 M NaClO₄, pH 5, electrolysing at -0.96 V for *ca.* 12 h.

Figure S7. Bulk electrolysis at -0.82 V vs NHE ($\eta = -0.41$ V) for 50 μ M [Ni(L)]²⁺ in 0.1 M NaClO₄, pH 5; CO:H₂ is the ratio (mol CO / mol H₂), as quantified by GC analysis after 1 h electrolysis.

Figure S8. Bulk electrolysis at -0.96 V vs NHE for 5 μ M [Ni(L)]²⁺ in 0.1 M NaClO₄, pH < 2; CO:H₂ is the ratio (mol CO / mol H₂), as quantified by GC analysis after 0.5 h electrolysis.

Figure S9. Chromatograms (TCD at left, FID at right) corresponding to gaseous product analysis after bulk electrolysis (-0.96 V vs NHE) at pH 5, 50 uM [Ni(MTC)]²⁺ after 1 h electrolysis (top panels), and at pH < 2, 5 uM [Ni(MTC)]²⁺ after 0.5 h electrolysis (bottom panels).

Figure S10. Scan rate dependence of the current density (*j*) vs applied potential for 1 mM solutions of $[Ni(HTIM)]^{2+}$ in 0.1 M NaClO₄ under Ar and CO₂, pH 5 (left panel) and pH 2 (right panel), with SMDE working electrode (area = 0.0104 cm²); 10 mM phosphate buffer added to pH 2 study, pH adjusted with concentrated HClO₄. Notice that when the system is under Ar, the peak current densities are significantly higher and are shifted to more positive potential at pH 2 compared to at pH 5. When the system is under CO₂, however, the peak current densities and their respective potentials are comparable at either pH.

III. SUPPLEMENTARY INFORMATION FOR PULSE RADIOLYSIS EXPERIMENTS

Figure S11. Determination of the bimolecular rate constants, *k*, for the reduction of $[Ni(L)]^{2+}$ (L = HTIM, MTC, MCC, TM) by CO₂^{-,} measured in 50 mM formate, pH 7, $G([Ni(L)]^+) = G(e_{aq}^-) + G(H^{\bullet}) + G(CO_2^{\bullet-}) = 6.$

Figure S12. Transient spectra of $[Ni(TM)]^+$ (top panel) and $[Ni(HTIM)]^+$ (bottom panel) obtained by pulse radiolysis in 0.1 M formate under Ar and CO₂.

Figure S13. (A) Plots of the extinction coefficient (ε) at *ca*. 380 nm times [CO₂], versus ε at *ca*. 380 nm, for [Ni(MTC)]⁺ (blue triangles) and [Ni(HTIM)]⁺ (green diamonds). The linear fits allow for the determination of the CO₂ binding constant, K_{CO_2} . The ε at *ca*. 380 nm for complexes [Ni(MCC)]⁺ and [Ni(TM)]⁺ show no dependence on [CO₂] (not shown). (**B**) Kinetic traces for pulse radiolysis experiments with [Ni(HTIM)]⁺ in solutions saturated with different concentrations of CO₂ and monitoring at 380 nm; 150 µM Ni, 100 mM formate, pH 5, 200 ns pulses of electrons (1.13 µM radicals). Notice the fast component under Ar, from e_{aq}^{-} , disappears when CO₂ is present, even at only 9.9%.

IV. SUPPLEMENTARY INFORMATION FOR CALCULATIONS, CALIBRATIONS, ETC.

Figure S14. Conformational isomers of [Ni(cyclam)]²⁺ present in solution and their relative abundance at equilibrium.

Figure S15. Side view (left) and bottom view from the 'mercury surface' looking up (right) of *N-RSRS*- $[Ni(cyclam)(CO_2)]^+$ adduct adsorbed to 'mercury surface' in CPCM of water solvent, where the 'mercury surface' is represented by a single Hg atom in the sixth coordination position of Ni. Atom colors: Ni (yellow), C (orange), H (white), N (cyan), O (red), Hg (yellow). Quite similar results were obtained using the B3LYP and the LC- ω PBE functionals with the 6-31+G(d,p) basis for Ni, C, N, O and H, and the SBKJC ECP basis for Hg.

Figure S16. Calibration plots for measuring CO and H_2 produced during bulk electrolysis experiments, the gases were quantified by FID and TCD detectors, respectively. Calibration is for 10 mL solution present in the electrolysis cell.

Figure S17. Example calculation for determining the Faradaic efficiency (F.E.) of a typical bulk electrolysis experiment.