Supporting Information

Enhancement of Low Energy Sunlight Harvesting in Dye-Sensitized Solar Cells Using Plasmonic Gold Nanorod

Shuai Chang, Quan Li, Xudong Xiao, King Young Wong and Tao Chen*

Supporting Text

Experimental

Materials: All chemical reagents were used without further purification. Hexadecyltrimethylammonium bromide (CTAB), silver nitrate, ascorbic acid and hydrogen tetrachloroaurate (III) hydrate 99.9% (metal basis) were purchased from Sigma Aldrich. Dye sensitizer cis-bis(isothicyanato)bis(2, 2'-bipyridyl-4, 4'-discarboxylato)-ruthenium (II)-bis-tetrabutylammonium, (coded as **N719**), TiO₂ paste (DSL 18NR-T) and iodide-based liquid electrolyte (HL-HPE) were purchased from Dyesol company. SiO₂ nanoparticles with 50 nm in diameter was purchased from Sigma-aldrich.

Synthesis of AuNR@Ag₂S: AuNRs (aspect ratio of 2.2, diameter and length at about 21 and 48 nm) were synthesized using a seed mediated method.^[1] For the formation of Ag₂S shell on AuNR surface,^[2] AuNR was firstly coated with a layer of Ag. Briefly, 10 mL of AuNRs was centrifuged at speed of 10k rpm for 10 min to remove the large excess CTAB, it was then diluted to 10 mL by DI water for the following reactions. For coating Au layer with different thicknesses of Ag and thus Ag₂S (2 nm, 3.7 nm and 6 nm), 0.5 mL, 1mL and 2 mL AgNO₃ (1mM in DI H₂O) were added to the 10 mL AuNRs solution, respectively. Thereafter, 0.1 mL, 0.4 mL and 0.8 mL ascorbic acid (0.1 M in H₂O) were added to each of the solution. The pH of the solution was adjusted to 8 by NaOH (0.1 M in H₂O) to start the reaction and ensure a slow reaction rate. After a few miniatures, Na₂S (10 mM) was added (20 µL, 30 µL, 50 µL) to the solution to transform Ag to Ag₂S. It is noted that dielectric constant of Ag₂S is 6, much larger than that of water, 1.33, though the aspect ratio remain nearly unchanged, Ag₂S encapsulating on the *entire* surface of AuNR would cause redshift of both the transverse and longitudinal peaks (Fig. 1d and Fig. S5).

Different amount of AuNR@Ag₂S were added to TiO_2 paste to achieve final concentrations of AuNR@Ag₂S of 0.88%wt, 1.66%wt, 2.05%wt. The mixed pastes were sonicated at 60 °C for 4 hrs before use.

Ag nanoparticles with diameter of about 60 nm was synthesized through a citrate reduction method.^[3] Briefly, 36 mg of AgNO₃ was dissolved in 200 mL H₂O and heated at 120 °C for 10 min under vigorous stirring. 4 mL of sodium citrate (1% wt) was then added and heating was extended to another 30 min, followed by cooling down to room temperature naturally. After that, Ag@Ag₂S was synthesized through adding 100 μ L of Na₂S (2 mM) into 10 mL of as-synthesized Ag nanoparticles under vigorous stirring (Fig. S8). To prepare Ag@Ag₂S/TiO₂ paste, 1 mL of Ag@Ag₂S nanoparticles was concentrated to 400 μ L by centrifugation. A portion of 100 μ L was added 500 mg TiO₂ paste for the plasmonic paste.

Device fabrication: A doctor-blade technique was utilized to produce photoanodes films. Briefly, transparent conducting glass (SnO₂:F, FTO glass, 15 Ω^{-1}) was cleaned by sonication in ethanol, acetone and DI water for 20 min during each washing step. Then 6 µm or 11µm thick TiO₂, AuNR@Ag₂S/TiO₂ or Ag@Ag₂S/TiO₂ electrodes were doctor-bladed onto FTO surfaces for different devices. The pastes were then relaxed at room temperature for 3 min before heating at 450 °C for 60 min to remove polymers. After cooling down to room temperature, the electrodes were immersed in 0.3 mM N719 dye in acetonitrile/tert-butyl alcohol (1:1, v/v) at room temperature for 16 hrs, followed by briefly rinsing with ethanol and drying in air to remove the non-adsorbed dyes. It should be noted that for the 11µm plasmon paste, it is composed of 3 µm bottom layer with pure TiO₂ nanoparticles, and 8 µm of top layer with AuNR@Ag₂S (0.88%wt) in TiO₂.

Platinum counter electrodes were prepared by sputtering method at 20 mA for 60 s at a power 150 W. Two holes (0.75 mm in diameters) were pre-drilled in the FTO glass for introducing electrolyte. After that, dye-adsorbed TiO₂ electrode and counter electrode were stacked and sealed with 60 μ m thermal-plastic parafilm spacers at about 120 °C. Iodide-based liquid electrolyte (HL-HPE, 0.1 M LiI, 50 mM I₂ and 0.6 M DMPII) was introduced into the sandwich cells through the drilled holes in the Pt electrode. After that, it was sealed by parafilm and covering glass at elevated temperature. The effective areas of all the photoanodes are 0.24 cm².

Characterizations: The cross-section of anode film was characterized on a scanning electron microscopy (FEI Quanta 400 FEG microscope). TEM images of the as-synthesized

nanoparticles were collected from Philips CM120 microscope operating at 120 kV. UV-Vis absorption and reflection of the colloidal solutions and anode films with and without dye adsorption were carried out using Hitachi U-3501 UV–visible/NIR spectrophotometer. The current-voltage (*J-V*) characteristics of the assembled cells were measured by a semiconductor characterization system (Keithley 236) at room temperature in air under the spectral output from solar simulator (Newport) using an AM 1.5G filter with a light power of 100 mW/cm². Electrochemical impedance spectroscopy (EIS) was recorded under one sun illumination over a frequency range of 0.1-105 Hz with an AC amplitude of 10 mV by using electrochemical workstation (CHI 660D). The parameters were calculated from Z-View software (v2.1b, Scribner AssociatNe, Inc.). IPCEs of DSSCs were recorded in Solar Cell QE/IPCE Measurement System (Zolix Solar Cell Scan 100) using DC mode.

Supporting discussions

1. To further investigate the scattering effect, we used SiO_2 (50 nm in diameters) to replace AuNR@Ag₂S with the same concentration for investigation (denoted as Device TiO_2/SiO_2-1). The PCE is 4.4%. Since of some TiO₂ nanoparticle are replaced by SiO₂ nanoparticles, the ICPE at around 370 nm is decreased when compared with device 1. Further increasing the concentration of SiO₂ nanoparticles (Device TiO_2/SiO_2-2 , increased by four times), the IPCE at blue region (around 370 nm) shows considerable improvement, indicating the scattering effect of SiO₂ nanoparticles (Fig. S9). Clearly, AuNR@Ag₂S is more efficient than SiO₂ due to the large scattering cross section. However, the IPCE at 600-720 nm remain nearly unchanged in both concentrations, which is different from AuNR@Ag₂S nanoparticles in the TiO₂ network (device 1 vs. device 3). There are three possible mechanisms for the V_{oc} increase in SiO₂ incorporated DSSCs. 1) It has been found that SiO₂ nanoparticles can facilitate ion transport of electrolyte in DSSCs.^[4] In the current case, SiO₂ nanoparticles are distributed in TiO₂ nanoparticle network in DSSCs. Therefore, SiO₂ nanoparticle can speed up the diffusion of electrolyte, thus facilitating electron exchange reaction and increasing V_{oc} . 2) SiO₂ contacted with TiO₂ nanoparticles would retard the recombination at the interface of TiO₂/electrolyte, i. e. suppress the back electron transfer from TiO₂ to electrolyte, this can also increase V_{oc} .^[5] 3) SiO₂ scattering improved bandgap transition can also lead to a lift up of quasi-Fermi level of electrons in TiO_2 which thus increase the V_{oc} since it is defined as the difference between the potential of redox electrolytes and the quasi-Fermi level of electrons in TiO₂. In addition, the reduced dark current would contribute to the increased V_{oc} (Fig. S16). However, too much SiO₂ nanoparticles in the DSSCs lead to both TiO₂ nanoparticles and

loaded dye molecules becoming less, thus giving birth to degraded V_{oc} (device 9).

2. The anode films were studied by SEM with Energy-dispersive X-ray spectroscopy (EDX). Fig. S11 shows the SEM images of anode film of device 3. Since the size of TiO₂ in our experiment is 20 nm, while the AuNR@Ag₂S is about 23 nm and 50 nm in diameter and length, the two types of nanoparticles can be easily differentiated. It can be seen that the morphology of AuNR@Ag₂S remain nearly unchanged and there are no aggregation of AuNR@Ag₂S nanoparticles . Since TiO₂ is stable upon annealing at 450 °C, here we only test the stability of AuNR@Ag₂S. This design is also under the consideration that the concentration of AuNR@Ag₂S in TiO₂ anode film is too low to be detected for a clear demonstration. For Energy-dispersive X-ray spectroscopy (EDX) characterization, a layer of AuNR@Ag₂S is deposited on FTO substrate and annealed the same as the preparation of anode films. The result shows that there are Au, Ag and S element, with some other elements coming from conducting glass (Fig. S12). This result, coupling with the above SEM images of the anode film, demonstrates the both the morphology and elements are remained in the devices.

3. Optical properties of AuNR@Ag₂S on glass. The optical absorption of AuNR@Ag₂S on a piece of glass was prepared drop casting. The spectrum (Fig. 13) is similar shape of AuNR@Ag₂S colloidal. The redshift of absorption result from aggregation during sample preparation.

4. Regarding the photon loss in AuNR@Ag₂S-incorporated devices. In DSSC, incident photon-to-electron conversion efficiency (IPCE) is a product of light harvesting efficiency (η_{lh}) , electron injection efficiency (η_{inj}) and electron collection efficiency (η_{col}) . In this work, addition of AuNR@Ag₂S increases η_{lh} as indicated in Fig. 4a and decreases η_{col} due to the increased series resistance, we assume that η_{inj} remains unchanged. From Fig. 4a, the light absorption of device **3** is increased by 32.0% when compared with that of device **1**. However, the J_{sc} improvement is only 26.28%. This difference in J_{sc} (IPCE) increase and light absorption increase can be considered as the maximum photon loss in form of "waste heat". Further, in device **4**, the absorption is increased by 38.4% while the J_{sc} improvement is only 12.6%. The less improved J_{sc} should be due to the decreased η_{col} . High concentration of AuNR@Ag₂S in TiO₂ nanoparticle network would lead to more pronounced series resistance for smaller η_{col} . Therefore, in the devices, the photon loss is dependent on the concentration of AuNR@Ag₂S in the anode films.

We also performed simulation to investigate the photon loss as a result of interband transition

using FDTD Solutions 7.5, developed by Lumerical Solutions, Inc. In the simulations, an electromagnetic pulse ranging from 400 to 1200 nm was launched into a box containing a target nanostructure. A mesh size of 0.5 nm was applied in the simulations. The morphological parameters of the nanostructures were set according to the average sizes measured from TEM images. Au nanorod was treated as a cylinder capped with a hemisphere at each end (right Figure). The diameter and total length of the core (AuNR) are 21.08 nm and 47.97 nm, respectively. The Ag₂S shell thickness is 2 nm. The dielectric functions of gold and silver sulfide were taken from previously measured values.^{[6][7]} The calculation results show that ~98% of light absorption at interband converts to waste heat. However, solar thermal conversion at longer wavelengths become smaller; this reduced light-to-heat conversion efficiency could also contribute to the increase in η_{lh} .

5. To measure the dye loading capacities of device 1 to 4, the dye adsorbed anode films were immersed in NaOH solution (0.1 M in H_2O) for 12 hrs. Results are shown in Fig. S6.

Fig. S1 TEM images of AuNR@Ag₂S with shell thickness of 3.7 nm (a) and 6 nm (b).

Fig. S2 *J-V* curve of DSSC with naked (without Ag_2S encapsulation) AuNR-incorporated TiO₂ nanoparticle anode.

Fig. S3 Band alignment of Au, Ag₂S TiO₂ and N719.

Fig. S4 UV-Vis absorption of the TiO_2 film and anode films of device 2, 5 and 6, those of device 1, 3 and 4 are also plotted for easy comparison.

Fig. S5 UV-Vis-NIR spectra of AuNR@Ag₂S with shell thickness of 3.7 and 6 nm. The two peaks at shorter and longer wavelengths for each of the sample are transverse and longitudinal plasmon absorptions.

Fig. S6 relative dye loading capacities of device 1 to 4.

Fig. S7FDTD calculation of solar thermal energy conversion efficiency of AuNR@Ag₂S.

Fig. S8 TEM image of the as-synthesized Ag@Ag₂S nanoparticles.

Fig. S9 *J*-*V* curves of devices with 11 μ m of anode films.

Fig. S10 IPCE of DSSCs with different concentration of SiO_2 in TiO_2 particles (a), those of device 1 and 3 are also plotted for easy comparison. *J-V* curve of devices with different concentration of SiO_2 (b).

Fig. S11 SEM images of anode film of device **3**, AuNR@Ag₂S nanoparticles are circled for easy observation.

Fig. S12 EDX spectra of high temperature annealed AuNR@Ag₂S on glass/FTO surface.

Fig. S13 UV-Vis-NIR absorption of the AuNR@Ag₂S on FTO surface.

Fig. S14 IPCE of device 1 and 3, those of device 2 and 4 are also plotted for easy comparison.

Fig. S15 SEM image of cross-section of TiO_2 anode film, the thickness is measured to be 6 μ m.

Fig. S16 *J*-*V* profiles of device 1, 8 and 9 under darkness.

Supporting references:

[1] A. Gole, C. J. Murphy, Langmuir 2008, 24, 266.

[2] M. Z. Liu, P. Guyot-Sionnest, J. Mater. Chem. 2006, 16, 3942.

[3] P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.

[4] M. Berginca, M. Hočevar, U. Opara Krašove, A. Hinsch, R. Sastrawan, M. Topiča, *Thin Solid Films* **2008**, 516, 4645.

[5] H. J. Son, X. W, Wang, C. Praittichai, N. C. Jeong, T. Aaltonen, R. G. Gordon, J. T. Hupp, *J. Am. Chem. Soc.* **2012**, 134, 9537.

[6] P. B. Johnson, R. W. Christy, Phys. Rev. B, 1972, 6, 4370;

[7] J. M. Bennett, J. L. Stanford, E. J. Ashley, J. Opt. Soc. Am., 1970, 60, 224.