Electronic Supplementary Information for

Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposites and their applications to lithium ion battery anodes

Ji Eun Lee, ^{‡ab} Seung-Ho Yu, ^{‡a} Dong Jun Lee, ^a Dong-Chan Lee, ^a Sang Ihn Han, ^a Yung-Eun Sung^{*a} and Taeghwan Hyeon^{*a}

^aWorld Class University (WCU) Program of Chemical Convergence for Energy & Environment (C2E2), Institute of Chemical Processes, School of Chemical and Biological Engineering, Seoul National University,1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea. Fax: +82 2 886 8457; Tel:+82 2 880 7150;E-mail: thyeon@snu.ac.kr, ysung@snu.ac.kr ^bCreative Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI), Changwon, Gyeongsangnam-do, 641-120, Korea.

Figure S1. TEM (a-c) and SEM (d) images of sea urchin-like β -FeOOH.

Figure S2. (a) TGA curves of sea urchin-like β -FeOOH particles. (b) TGA curves of polypyrrole-coated β -FeOOH particles.

Figuer S3. TEM images of polypyrrole coated β -FeOOH after calcination at 500 °C.

Figure S4. Raman spectrum of the sea urchin-like C-Fe₃O₄ nanocomposite.

Figure S5. TEM images of the sea urchin-like Fe₃O₄ particles without carbon shell.

Figure S6. TEM images (a), and XRD (b) of the sea urchin-like α -Fe₂O₃ particles.

Figure S7. TEM images of sectioned sea urchin-like β -FeOOH.

Figure S8. TEM images of sectioned C-Fe₃O₄ nanocomposites

Figure S9. Photograph of C-Fe₃ O_4 nanocomposite synthesized in large-scale, showing 3.42 g of the product.

Figure S10. TEM images of (a) β -FeOOH rods which were synthesized in the absence of SDS, (b) lamellar structure that was obtained when pure water was used as a solvent, and (c) the product obtained after calcining the product in (b).

Figure S11. Cycling performance of sea urchin-like C-Fe₃O₄ nanocomposite up to 100 cycles.

Figure S12. TEM images of sectioned C-Fe₃O₄ nanocomposite particles after 10 charge/discharge

Figure S13. XPS survey spectrum of the sea urchin-like C-Fe₃O₄ nanocomposites.