Electronic Supplementary Information (ESI)

Hollow Core-shell Nanorod Supercapacitor Electrodes: Gap Matters

Cao Guan^{a,c}, Xinhui Xia^a,Nan Meng^a, Zhiyuan Zeng^b, Xiehong Cao^b, Cesare Soci^a, Hua Zhang^b, and Hong Jin Fan^{*a,c}

^aDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore. ^bSchool of Materials Science and Engineering, Nanyang Technological University, 639798

Singapore.

^cEnergy Research Institute @ NTU (ERIAN), 50 Nanyang Drive, 637553 Singapore.

* Corresponding author. Email: <u>fanhj@ntu.edu.sg</u>

Figure S1. (a) Large-scale SEM image of CoO nanowire on nickel foam. SEM image of CoO nanowire after ALD coating of (b) TiO_2 (165 cycles), (c) Al_2O_3 (80 cycles) and TiO_2 (165 cycles). (d) SEM image of the structure after immersing in KOH.

Figure S2. (a) CV curves of CoO, CoO@TiO₂ and CoOOTiO₂. (b) Charge-discharge curves of CoO and CoOOTiO₂ at different current densities.

Figure S3. TEM images of CoO nanowire after ALD coating of the bilayer of Al_2O_3/TiO_2 with cycles of: (a) 80/55, (b) 50/110, (c) 20/110, (d) 0/110, (e) 0/165, and (f) 50/0. (g) Areal capacitance of the 9 structures with different cycles of ALD coating. 20 ALD cycles of Al_2O_3 (~3 nm thick) are used as the optimized gap thickness for supercapacitor characterization.

Figure S4. (a) Rate and (b) cycling behavior of the NiO and NiOOTiO₂ electrodes.