

Energy &

Environmental Scicience

FULL PAPER

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

Supporting Information

for Energy & Envirmental Science, DOI: 10.1039/c0xx00000x

Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells

Ali Abouimrane*, Wei Weng, Hussameldin Eltayeb, Yanjie Cui, Jens Niklas, Oleg Poluektov, and Khalil Amine*

Figure S1. XRD of Na₂BDC, NaHBDC and Na_{0.75}Mn_{0.7}Ni_{0.23}O₂ pristine materials.

Figure S2. SEM pictures of Na₂BDC (a), NaHBDC (b) and Na_{0.75}Mn_{0.7}Ni_{0.23}O₂ (c). For Na_{0.75}Mn_{0.7}Ni_{0.23}O₂ material, SEM images shows the formation of ~ 20 μ m particle size spherical secondary particles.

Figure S3. TGA of of Na₂BDC, and NaHBDC showing good thermal stability until ~ 480°C for Na₂BDC and

until ~ 300°C for NaHBDC.

15

5

¹⁰ **Figure S4.** Voltage profile and capacity retention of Na/Na₂BDC cell for 50 cycles under 10 and 20 mA/g current density.

Figure S5. Voltage profile and capacity retention of Li/Na₂BDC cell for 100 cycles under 20 and 40 mA/g current density showing good cycleability.

Figure S6. 2nd cycle dQ/dV curves of Na/Na₂BDC and Li/Na₂BDC systems under 20 mA/g current density.

Figure S7. Voltage profile and capacity retention of of Li/NaHBDC cell for 100 cycles under 40 mA/g current density.

¹⁰ Figure S8. Voltage profile and Capacity retention of Na/HTDA half-cell showing poor cyleability.

Figure S9. (a) Voltage profile and (b) Capacity retention of Na/NaHBDC half-cell for 50 cycles under the current rate of 40 mA.g⁻¹ between 0.1V and 1.7V demonstrates that this anode can be cycled using Al current collector contrary to lithium batteries as no Al-Na was predicted by their phase diagram.