SUPPORTING INFORMATION Phase stability, electrochemical stability and ionic conductivity in the $Li_{10\pm 1}MP_2X_{12}$ (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors

Shyue Ping Ong,[†] Yifei Mo,[†] William Davidson Richards,[†] Lincoln Miara,[‡] Hyo Sug Lee,[‡] and Gerbrand Ceder^{*,†}

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, and Samsung Advanced Institute of Technology, USA, 1 Cambridge Center, Suite 702, Cambridge, MA 02142

E-mail: gceder@mit.edu

Relaxed Structures

As the refined LGPS structure $(P4_2/nmc)$ has partial occupancies on Li sites as well as Ge/P sites, we ordered the arrangement of Li, Ge, and P atoms in LGPS using an electrostatic energy criterion. All ions were assigned "idealized" charges based on their valence states, *i.e.*, +1 for Li, +4 for Ge, +5 for P and -2 for S. We then selected the 30 structures with the lowest electrostatic energy and

^{*}To whom correspondence should be addressed

[†]Massachusetts Institute of Technology

[‡]Samsung Advanced Institute of Technology

relaxed them using density functional theory (DFT). The structure that minimizes the electrostatic energy is not the lowest energy structure based on DFT calculations. While the lowest electrostatic energy ordered structure still has a tetragonal $P4_2/mc$ spacegroup, the lowest DFT energy structure has a P1 spacegroup with a unit cell that is slightly distorted from the tetragonal cell. The coordinates of the lowest DFT energy P1 structure and lowest electrostatic energy $P4_2/mc$ structure are provided in Tables 1 and 2 respectively.

			Lattice pa	arameters					
	a	b	С	α	β	γ			
	8.561	8.847	12.929	91.97	90.63	90.24			
	Atomic positions								
Element	а	b	С	Element	a	b	С		
Li	0.989	0.517	0.952	S	0.989	0.177	0.444		
Li	0.964	0.517	0.426	S	0.005	0.793	0.389		
Li	0.510	0.965	0.549	S	0.295	0.531	0.901		
Li	0.497	0.996	0.051	S	0.685	0.530	0.899		
Li	0.260	0.289	0.158	S	0.496	0.696	0.097		
Li	0.744	0.747	0.282	S	0.487	0.309	0.060		
Li	0.216	0.818	0.754	S	0.196	0.947	0.589		
Li	0.230	0.757	0.252	S	0.801	0.946	0.590		
Li	0.754	0.220	0.352	S	0.007	0.295	0.065		
Li	0.462	0.516	0.751	S	0.001	0.711	0.103		
Li	0.229	0.228	0.366	S	0.213	0.486	0.601		
Li	0.734	0.256	0.857	S	0.814	0.491	0.589		
Li	0.245	0.761	0.006	S	0.485	0.800	0.375		
Li	0.741	0.263	0.131	S	0.496	0.180	0.423		
Li	0.764	0.728	0.689	S	0.283	0.989	0.906		
Li	0.222	0.259	0.919	S	0.715	0.999	0.922		
Li	0.748	0.761	0.008	S	0.993	0.664	0.788		
Li	0.244	0.720	0.485	S	0.003	0.281	0.761		
Li	0.783	0.214	0.625	S	0.778	0.466	0.274		
Li	0.241	0.212	0.650	S	0.203	0.478	0.292		
Ge	0.997	0.488	0.183	S	0.517	0.202	0.721		
Ge	0.509	0.991	0.816	S	0.492	0.791	0.702		
Р	0.993	0.965	0.502	S	0.687	0.016	0.221		
Р	0.493	0.516	0.993	S	0.291	0.031	0.219		
Р	0.008	0.483	0.684						
Р	0.488	0.009	0.311						

Table 1: Relaxed ordered P1 $Li_{10}GeP_2S_{12}$ structure.

			Lattice pa	arameters			
	а	b	С	α	β	γ	
	8.758	8.758	12.626	90	90	90	
			Atomic	positions			
Element	а	b	С	Element	а	b	С
Li	0.228	0.773	0.294	S	0.000	0.195	0.412
Li	0.772	0.227	0.294	S	0.000	0.805	0.412
Li	0.273	0.272	0.794	S	0.305	0.500	0.912
Li	0.727	0.728	0.794	S	0.695	0.500	0.912
Li	0.228	0.227	0.294	S	0.500	0.691	0.097
Li	0.772	0.773	0.294	S	0.500	0.309	0.097
Li	0.273	0.728	0.794	S	0.191	0.000	0.597
Li	0.727	0.272	0.794	S	0.809	0.000	0.597
Li	0.000	0.500	0.940	S	0.000	0.304	0.094
Li	0.000	0.500	0.440	S	0.000	0.696	0.094
Li	0.500	0.000	0.548	S	0.196	0.500	0.594
Li	0.500	0.000	0.048	S	0.804	0.500	0.594
Li	0.256	0.225	0.037	S	0.500	0.789	0.404
Li	0.744	0.775	0.037	S	0.500	0.211	0.404
Li	0.275	0.756	0.537	S	0.289	0.000	0.904
Li	0.725	0.244	0.537	S	0.711	0.000	0.904
Li	0.275	0.244	0.537	S	0.000	0.693	0.777
Li	0.725	0.756	0.537	S	0.000	0.307	0.777
Li	0.256	0.775	0.037	S	0.807	0.500	0.277
Li	0.744	0.225	0.037	S	0.193	0.500	0.277
Ge	0.500	0.000	0.801	S	0.500	0.209	0.698
Ge	0.500	0.000	0.301	S	0.500	0.791	0.698
Р	0.000	0.500	0.686	S	0.709	0.000	0.198
Р	0.000	0.500	0.186	S	0.291	0.000	0.198
Р	0.000	0.000	0.504				
Р	0.500	0.500	0.004				

Table 2: Relaxed ordered P42/mc $Li_{10}GeP_2S_{12}$ structure

For aliovalently substituted structures $(Al^{3+} \text{ or } P^{5+} \text{ for } Ge^{4+} \text{ with corresponding changes in } Li^+$ concentration), we performed a similar electrostatic ordering of the structure and then performed DFT calculations on the lowest electrostatic energy structure only, *i.e.*, we did not perform DFT calculations on multiple possible orderings, given the significant computational time involved in exploring many orderings. These structures are provided in Tables 3 and 4.

	Lattice parameters								
	а	b	С	α	β	γ			
	8.722	8.567	13.662	90.686	89.194	89.473			
	Atomic positions								
Element	а	b	С	Element	а	b	С		
Li	0.252	0.270	0.146	S	0.001	0.192	0.430		
Li	0.744	0.736	0.165	S	0.015	0.799	0.427		
Li	0.761	0.247	0.682	S	0.301	0.517	0.914		
Li	0.275	0.746	0.291	S	0.687	0.512	0.890		
Li	0.729	0.257	0.367	S	0.510	0.696	0.081		
Li	0.234	0.214	0.329	S	0.510	0.302	0.065		
Li	0.766	0.786	0.341	S	0.191	-0.006	0.601		
Li	0.286	0.726	0.797	S	0.801	-0.013	0.597		
Li	0.752	0.265	0.161	S	-0.005	0.289	0.063		
Li	0.227	0.209	0.722	S	-0.021	0.716	0.076		
Li	0.773	0.788	0.737	S	0.214	0.486	0.621		
Li	0.212	0.250	-0.056	S	0.817	0.504	0.611		
Li	0.765	0.746	-0.032	S	0.500	0.787	0.418		
Li	0.268	0.740	0.524	S	0.474	0.215	0.423		
Li	0.245	0.246	0.519	S	0.308	-0.014	0.897		
Li	0.721	0.736	0.529	S	0.708	-0.010	0.887		
Li	0.241	0.767	0.035	S	0.012	0.692	0.790		
Li	0.773	0.258	-0.054	S	-0.012	0.302	0.783		
Li	-0.007	0.515	0.946	S	0.786	0.503	0.274		
Li	-0.008	0.496	0.396	S	0.197	0.478	0.269		
Li	0.506	0.010	0.542	S	0.498	0.212	0.740		
Li	0.513	-0.001	0.089	S	0.503	0.821	0.709		
Al	-0.005	0.499	0.170	S	0.713	0.006	0.231		
Al	0.494	0.005	0.321	S	0.298	0.004	0.213		
Р	0.008	0.500	0.698						
Р	0.506	0.004	0.810						
Р	0.000	-0.004	0.515						
Р	0.506	0.507	-0.014						

Table 3: Relaxed ordered $Li_{11}AlP_2S_{12}$ structure.

Lattice parameters							
	a	b	С	α	β	γ	
	8.817	8.817	12.660	90.000	90.000	89.780	
			Atomic	positions			
Element	а	b	с	Element	а	b	С
Li	0.261	0.277	0.181	S	0.008	0.189	0.401
Li	0.772	0.236	0.710	S	0.011	0.807	0.413
Li	0.236	0.772	0.290	S	0.307	0.511	0.913
Li	0.277	0.261	0.819	S	0.689	0.508	0.901
Li	0.761	0.777	0.319	S	0.508	0.689	0.099
Li	0.272	0.736	0.790	S	0.511	0.307	0.087
Li	0.736	0.272	0.210	S	0.189	0.008	0.599
Li	0.777	0.761	0.681	S	0.807	0.011	0.587
Li	0.739	0.739	0.000	S	-0.014	0.312	0.100
Li	0.236	0.759	0.526	S	-0.007	0.701	0.095
Li	0.759	0.236	0.474	S	0.201	0.493	0.595
Li	0.239	0.239	0.500	S	0.812	0.486	0.600
Li	0.259	0.736	0.026	S	0.486	0.812	0.400
Li	0.736	0.259	-0.026	S	0.493	0.201	0.405
Li	0.002	0.497	0.944	S	0.312	-0.014	0.900
Li	-0.003	0.502	0.444	S	0.701	-0.007	0.905
Li	0.502	-0.003	0.556	S	0.001	0.687	0.777
Li	0.497	0.002	0.056	S	0.009	0.307	0.788
Р	0.009	0.492	0.689	S	0.807	0.509	0.288
Р	-0.008	0.509	0.189	S	0.187	0.501	0.277
Р	0.509	-0.008	0.811	S	0.501	0.187	0.723
Р	0.492	0.009	0.311	S	0.509	0.807	0.712
Р	0.005	0.005	0.500	S	0.687	0.001	0.223
Р	0.505	0.505	0.000	S	0.307	0.009	0.212

Table 4: Relaxed ordered $Li_9P_3S_{12}$ structure.

Stable phases

Tables 5-7 list the spacegroup and formation energies per atom of all the **stable** compounds in the Li-M-P-X systems investigated in this work. The $Li_{10\pm1}MP_2X_{12}$ are metastable in the calculated phase diagrams, and the structures are reported in the previous sections.

Formula	Spacegroup	Form. energy	Formula	Spacegroup	Form. energy
		/ atom (eV)			/ atom (eV)
Li ₉ Ge ₄	Cmcm	-0.343	Li ₁₃ Sn ₅	P3m1	-0.395
Li ₁₅ Ge ₄	I43d	-0.321	Li ₅ Sn ₂	R3m	-0.395
LiGe	I4 ₁ /a	-0.28	Li ₂ Sn ₅	P4/mbm	-0.202
GeO ₂	P4 ₂ /mnm	-2.054	Li_7Sn_2	Cmmm	-0.367
Li ₂ O	$Fm\overline{3}m$	-2.078	Li ₁₇ Sn ₄	F43m	-0.346
Li_2O_2	P6 ₃ /mmc	-1.766	SnO_2	Immm	-2.543
LiP	$P2_1/c$	-0.526	Sn_4P_3	R3m	-0.066
LiP ₇	I4 ₁ /acd	-0.163	SnS	Pnma	-0.445
Li ₃ P ₇	$P2_12_12_1$	-0.364	SnS_2	$P\overline{3}m1$	-0.379
Li ₃ P	P6 ₃ /mmc	-0.698	SnSe ₂	$P\overline{3}m1$	-0.337
P_2O_5	Pnam	-2.433	SnSe	Pcmn	-0.436
GeS	Pbnm	-0.266	Li ₁₃ Si ₄	Pbam	-0.244
GeS ₂	Pc	-0.315	Li ₂₁ Si ₅	F43m	-0.215
Li ₂ S	$Fm\overline{3}m$	-1.341	Li ₁₂ Si ₇	Pnma	-0.248
P_4S_9	$P2_1/c$	-0.17	SiO_2	I42d	-3.267
P_4S_3	Pmnb	-0.152	SiP	$Cmc2_1$	-0.159
P_2S_5	$P\overline{1}$	-0.164	SiP ₂	Pbam	-0.131
P_4S_7	$P2_1/c$	-0.181	SiS ₂	$P\overline{1}$	-0.680
Ge ₄ Se ₉	$Pca2_1$	-0.248	SiSe ₂	Imcb	-0.453
GeSe	Pcmn	-0.236	LiAl	$Fd\overline{3}m$	-0.175
GeSe ₂	$P2_1/c$	-0.266	Li ₃ Al ₂	C2/m	-0.179
Li ₂ Se	Fm3m	-1.263	LiAl ₃	Pm3m	-0.090
PSe	$P2_1/c$	-0.081	AlP	F43m	-0.612
LiSn	P2/m	-0.326	Al_2S_3	P61	-1.053

Table 5: Stable binary compounds in the Li-M-P-X systems.

Formula	Spacegroup	Form. energy	Formula	Spacegroup	Form. energy
		/ atom (eV)			/ atom (eV)
Li ₂ GeO ₃	Ccm2 ₁	-2.295	Li ₄ SnS ₄	Pnma	-1.055
Li ₄ GeO ₄	Cmcm	-2.288	SnPS ₃	Pc	-0.348
Li ₄ Ge ₅ O ₁₂	$P\overline{1}$	-2.198	Li ₂ SnSe ₃	Cc	-0.831
GeP ₂ O ₇	$P\overline{1}$	-2.473	Li ₄ SnSe ₄	Pnma	-0.977
$Li_4P_2O_7$	$P2_1/c$	-2.753	SnPSe ₃	Pc	-0.248
LiPO ₃	$P2_1/c$	-2.708	$Li_2Si_2O_5$	Ccc2	-3.022
Li ₃ PO ₄	$Pmn2_1$	-2.764	Li ₂ SiO ₃	$Ccm2_1$	-2.893
Li ₂ GeS ₃	$Ccm2_1$	-0.891	Li ₄ SiO ₄	$P\overline{1}$	-2.685
Li ₄ GeS ₄	Pnma	-1.061	Li ₈ SiO ₆	P6 ₃ cm	-2.450
Li_2PS_3	$P\overline{3}1m$	-0.876	SiP ₂ O ₇	$P2_1/c$	-2.781
Li ₃ PS ₄	$Pmn2_1$	-0.941	$Si_5P_6O_{25}$	$R\overline{3}$	-2.873
Li2GeSe3	$Ccm2_1$	-0.786	Li ₂ SiS ₃	$Ccm2_1$	-1.061
Li ₄ GeSe ₄	Pnma	-0.957	Li ₄ SiS ₄	Pnma	-1.185
Li ₂ PSe ₃	$P\overline{3}1m$	-0.724	Li ₄ SiSe ₄	Pnma	-1.026
SnP_4O_{11}	$P2_1/c$	-2.456	Li ₅ AlS ₄	Pmmn	-1.324
$Sn(PO_3)_2$	Pbca	-2.432	LiAlS ₂	$Pna2_1$	-1.284
SnP_2O_7	$P\overline{1}$	-2.528	AlPS ₄	P222	-0.582
Li_2SnS_3	Cc	-0.903			

Table 6: Stable ternary compounds in the Li-M-P-X systems.

Table 7: Stable quarternary con	npounds in the Li-M-P-X systems	s.
---------------------------------	---------------------------------	----

Formula	Spacegroup	Form. energy / atom (eV)
LiSn ₂ (PO ₃) ₅	Pc	-2.500