Lone Pair Electrons Minimize the Lattice Thermal Conductivity Supplementary information

Michele D. Nielsen¹, Vidvuds Ozolins^{2,*} and Joseph P. Heremans^{1,3,*}

1. Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio, USA

2. Department of Materials Science and Engineering, University of California, Los Angeles, USA

3. Department of Physics, Ohio State University, Columbus, Ohio, USA

1. X-ray diffraction (XRD) data

XRD data on all samples are reported in Fig. S1; all index to rocksalt structures,

except for trigonal AgBiSe₂. No reference data were found for NaBiTe₂.

Figure S1: X-ray diffraction data on the compounds prepared for this study. Except for AgBiSe₂, which was prepared in both its trigonal and rocksalt form by varying the heat treatment, all samples index in the NaCl structure. The dots are reference peaks from the International Centre for Diffraction Data PDF database.

The lattice parameters of the $Ag_{1-x}Na_xSbTe_2$ alloys, shown in Fig. S2, follow a linear dependence on x, consistent with Vegard's law.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

Figure S2: The lattice parameter (in the rocksalt unit cell) of $Ag_{1-x}Na_xSbTe_2$ alloys as a function of composition.

We show typical temperature-dependent X-ray diffraction data in Fig. S3.

Figure S3 Typical temperature-dependent X-ray spectra of measured cubic compounds.

From these, the temperature-dependent lattice parameter can be calculated. The results are plotted Fig. S4: the lattice parameter increases linearly with *T*, so a single isotropic linear thermal expansion α can be derived and is reported in Table 1 (main text). The data reported for the nominal composition AgSbTe₂ were in fact obtained on Ag_{0.73}Sb_{1.12}Te₂.

Figure S4 Temperature-dependence of the lattice parameter calculated from data like Fig. S3. The linear thermal expansion coefficients α are calculated from the slope of these curves.

2. Electrical properties

The electrical resistivity of most compounds studied experimentally is shown in Fig. S5. NaSbSe₂ is too electrically insulating to be measured. Except for NaSbTe₂, all compounds behave like semiconductors; NaBiTe₂ behaves like a doped one. Consistently with previous results on AgSbTe₂,¹ Ag_{0.73}Sb_{1.12}Te₂ behaves like a very narrow-gap semiconductor. All this implies that the density of native defects, to the extent that they act as donors or acceptors, is limited to sub-percentage levels.

*Figure S5: Electrical conductivity of NaSbTe*₂, *Ag*_{0.73}*Sb*_{1.12}*Te*₂, *NaBiTe*₂, *AgSbSe*₂, *AgBiSe*₂ (*trigonal*), *and AgBiSe*₂ (*cubic*). *NaSbSe*₂ was electrically insulating.

AgSbTe₂, Phys. Rev. B 77 245204 (2008)

¹ V. Jovovic and J. P. Heremans, Energy Band Gap and Valence Band Structure of

3. Calculated phonon spectra: summary

The calculated phonon dispersions are reported in sections 5 and 6. From them, modeaveraged Grüneisen parameters γ , sound velocities and the zone edge energies, expressed as Debye temperatures Θ_i can be derived and tabulated in Table S1. Select data were reproduced in Table 1 of the main text. Lattice parameters *a* and bulk moduli *B* were calculated from the variation of the total energy vs. volume *E* (*V*) by fitting the calculated points to 3rd-order polynomials in *V*.

Table S1. The interatomic spacing (a/2), calculated bulk modulus B, mode-and-frequency averaged Grüneisen parameter γ , sound velocities, and zone-boundary Debye energy $k_B\Theta_i$ for phonons along the axes indicated.

Theory	a/2	В	γ	Sound velocities(m/s)			Zone-boundary energy Θ_i (K)		
	(nm)	(GPa)		Gamma-to-X [x 0 -x]			X [¾ 0 -¾]		
				TA1	TA2	LA	TA1	TA2	LA
NaSbSe ₂	0.2906	44	1.7	2132	2770	4329	76	89	114
NaSbTe ₂	0.3103	35	1.6	1664	2430	3630	63	85	94
NaBiTe ₂	0.3138	34	1.5	1295	2055	3131	40	56	56
				Gamma-to-K [0 x x]			K [0 ¾ ¾]		
				TA1	TA2	LA	TA1	TA2	LA
AgSbSe ₂	0.2819	78	3.5	1362	2105	3433	47	52	62
AgSbTe ₂	0.2972	67	2.3	1325	2469	3526	53	56	65
AgBiSe ₂	0.2893	74	2.5						
AgBiTe ₂	0.3018	66	2.5	1278	2116	3223	47	47	55

Note that the Debye temperature values Θ_D fitted to the specific heat (Table 1) are nearly twice the Debye temperatures Θ_i calculated from the zone-boundary acoustic phonon energies $k_B\Theta_i$ in Table S1. Two factors contribute to this. Firstly, there is a contribution of the optical modes to the high-temperature value of *C*. Secondly, Fig. 2 of the main text shows that many acoustic modes do not have monotonic energy-momentum relations, so that the maximum phonon energy is higher than the energy $k_B\Theta_i$ at the zone boundary. The calculated mode-averaged Grüneisen parameters for all 72 compounds (8 Group I cations \times 3 Group V cations \times 3 Group VI anions) are given in Table S2 below.

Table S2: Calculated mode-averaged Grüneisen parameters γ for all 72 compounds grouped by the group I cation. Higher γ values (stronger anharmonicity) correspond to warmer colors. Red squares indicate that the compounds have unstable phonon modes at the calculated equilibrium lattice parameter. AgSbSe₂ is predicted to have a weakly unstable L-point TA mode, and is found experimentally to have the lowest thermal conductivity of all materials considered in our study.

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is O The Royal Society of Chemistry 2013

4. Literature with structural information of known *ABX*₂ compounds.

In agreement with our calculations, the crystal structures of several of the ABX_2 compounds have been determined experimentally and found to be either not rocksalt based or resemble highly distorted variants of rocksalt. The references are:

CuSbS₂: Razmara, M.F.; Henderson, C.M.B.; Pattrick, R.A.D. Mineralogical Magazine **61**, 79-88 (1997)

CuBiS₂: Portheine, J.C.; Nowacki, W. Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie **141**, 387-402 (1975);

CuSbSe₂: Imamov, R.M.; Pinsker, Z.G.; Ivchenko, A.I. Kristallografiya **9**, 853-856 (1964);

AgSbS₂: Effenberger, H.; Paar, W.H.; Topa, D.; Criddle, A.J.; Fleck, M. American Mineralogist **87**, 753-764 (2002);

NaAsS₂: Palazzi, M.; Jaulmes, S. Acta Cryst. B 33, 908-910 (1977);

KSbS₂: Graf, H.A.; Schaefer, H. Zeitschrift fuer Anorganische und Allgemeine Chemie **414**, 211-219 (1975);

CsSbS₂: Kanishcheva, A.S.; Mikhailov, Yu.N.; Kuznetsov, V.G.; Batog, B.N. Doklady Akademii Nauk SSSR **251**, 603-605 (1980);

RbAsSe₂: Sheldrick, W.S.; Haeusler, H.J. Zeitschrift fuer Anorganische und Allgemeine Chemie **561**, 139-148 (1988);

RbSbS₂: Kanishcheva, A.S.; Kuznetsov, V.G.; Lazarev, V.B.; Tarasova, T.G. Zhurnal Strukturnoi Khimii **18**, 1069-1072 (1977)

Rocksalt CuBiSe₂, AgAsSe₂, AgSbSe₂: Zhuze, V.P.; Sergeeva, V.M.; Shtrum, E.L. Soviet physics - Technical physics **3**, (10) 1925-1938 (1958); Tomaszewski, K. Phase Transition 38, 127-220 (1992); Geller, S.; Wernick, J.H. Acta Crystallographica 12, 46-54 (1959).

5. Calculated phonon spectra of the rocksalt compounds

The Brillouin zone of the rocksalt compounds, with the atomic arrangement of Fig. 1a, is shown in Fig. S6. The calculated phonon dispersions of rocksalt compounds follow with the compound name indicated above each panel. Compounds with spectra that contain imaginary calculated frequencies are not shown, with the exception of AgSbSe₂, which has been synthesized in the cubic structure in this study and in previous ones (Ref. 13 of the main text).

Figure S6. Brillouin zone of cubic D4 (AF-IIb), and phonon dispersions of the stable noble metal D4 rocksalt-based ABX_2 compounds with A=noble metal (see below)

CuSbTe2

CuBiTe2

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

AgBiS2

AgBiTe2

AuSbTe2

AuBiTe2

6. Calculated phonon spectra of the rhombohedral rocksalt-based compounds

The Brillouin zone of the compounds with rhombohedral L11 crystal structures, the atomic arrangement shown in Fig. 1b, is shown in Fig. S7. The calculated phonon dispersions of those compounds follow, with the compound name indicated above each panel. Compounds with spectra that contain negative calculated frequencies are unstable and do not exist in the rhombohedral L11 crystal structure; accordingly, their phonons are not shown.

Figure S7: Brillouin zone of rhombohedral R3m (AF-II). Phonon dispersions of the stable R3m rocksalt-based ABX₂ compounds with A=alkali metal (see below).

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

NaAsSe2

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

NaAsTe2

NaSbS2

NaSbTe2 250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

NaBiS2

NaBiTe2

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

KAsSe2

KSbTe2

KBiS2

KBiTe2

CsSbSe2 250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB Ζ XIQ ZIL P G G FP1 L Phonon wave vector

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB Ζ XIQ ZIL P G G FP1 L Phonon wave vector

CsSbTe2

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

CsBiSe2

CsBiTe2

RbAsTe2

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

RbSbSe2

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

RbSbTe2

RbBiS2

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

RbBiSe2

RbBiTe2

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

TIAsTe2

TISbTe2

TISbSe2

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

TISbS2

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

TIBiTe2

250 200 150 Frequency (1/cm) 100 50 0 -50 B1IB XIQ FP1 ZIL P G Ζ G L Phonon wave vector

TIBiSe2

Electronic Supplementary Material (ESI) for Energy & Environmental Science This journal is C The Royal Society of Chemistry 2013

TIBiS2

